Child Support Payments and Non-Compliance Cost:
Does It Matter whether Money Comes from the Wallet
or from the Purse?

Giedrius Blazys*

Sep 15, 2008

Abstract

Using Panel Study of Income Dynamics (1985-2005) data I construct a sample of divorced fathers who formed new partnerships. I use child support payment information to test the so-called “Income pooling” hypothesis, which is implied by Unitary Household Decision model. Under Unitary model household expenditures on the husband’s children from his previous marriage should not be affected by intra-household income distribution. However, the new partner will likely receive less Utility from such expenditures, so her and his income will have different effect on child support payments if partners’ relative incomes affect their bargaining power.

Although there is a great variation in fathers’ payment behavior over years, and a large fraction of fathers don’t pay any child support, a significant proportion of fathers pay what is ordered by court. Therefore, I jointly model father’s decision to comply with child support orders and voluntary payment amounts to account for fathers who are simply paying what is ordered by court. My estimates indicate that higher share of father’s income in household income increases child support payment amounts. This finding rejects income pooling and is consistent with Family Bargaining models. However, the differential effect of father’s income declines when controlling for individual heterogeneity in Random Effects regression, and it completely disappears in Fixed Effects Specification. Alternative explanations are suggested.

*Department of Economics, University of Washington, E-mail: giedrius@u.washington.edu. I am grateful to Shelly Lundberg, John Ermisch and to seminar participants at the University of Washington for their comments and suggestions. I also thank John Ermisch for suggesting the use of PSID dataset for the child support payments research topic, Laura Argys for sharing child support guideline schedules, and Anne Case and Irwin Garfinkel for sharing State level child support policy variables.
1 Introduction

The second half of the previous century saw dramatic changes in how we understand a family. Unprecedentedly high divorce rates and relatively low remarriage rates led to a dramatic increase in the fraction of families with children raised by single mothers. In the event of marital disruption, children traditionally stay with the mother and the father is expected to contribute to child rearing cost by paying child support. Many fathers find new life partner and eventually get married again. It is intuitive to expect that, on average, higher father’s income should lead to higher child support payments. However, what should be the relationship between father’s child support payments and income from other family members in the father’s new household is less clear.

Traditional economic theory, which treats family as a single agent with explicit preferences and a single budget constraint, predicts that income source should not affect intra-household resource allocation, i.e. income from one family member should be spend in the same way as income from the other members. However, father’s new partner most likely receives less utility from expenditures on children from his previous marriage. If, instead, household resources are allocated as described by Cooperative Bargaining models and if partners’ relative income affect their bargaining power, then child support payments will be affected by the variation in the source of household income.

Income pooling hypothesis has been tested and in general rejected in a variety of settings. This study is motivated by Ermisch and Pronzato (2008). Ermisch and Pronzato use British panel data to construct a sample of divorced or separated fathers with dependent children. They consider fathers who are remarried or in cohabiting relationship with another women and find that higher share of father’s income in household income increases both the probability of child support payment and child support share relative to the household income, and thus

1 A mother becomes a Custodial parent in about 90% of divorce settlement cases
2 Researchers, for example, used individual data on leisure times or labor supplies, and even expenditures on men and women’s clothing and tested if they depend on the variation in the source of household income. See, e.g. Fortin and Lacroix 1997, Lundberg et al. 1997, Chiappori et al. 2002
they are able to reject income pooling.

However, child support payments can only have a behavioral interpretation if they are made voluntarily. Ermisch and Pronzato argue that high prevalence of informal child support arrangements and weak child support order enforcement in the United Kingdom allows them to assume that child support payments are voluntary. National statistics suggest that situation in the United States is not much different - Census staff estimates that in the U.S. only about 60% of previously married mothers have formal child support awards, of which only about 45% receive the full amount awarded (Grall 2006). This low level of compliance might be a good indicator that child support transfers are to large degree voluntary.

Nevertheless, there still is a significant fraction of fathers who are actually paying what is ordered by court. Moreover, the United States government increased its effort to collect child support orders in the late 80’s and 90’s. Therefore, I jointly model voluntary support payment amounts and father’s decision to comply (or not to comply) with child support order, in order to account for the fact that some fathers are simply paying what is ordered by court. Arguably, noncustodial fathers incur some monetary or nonmonetary cost if they decide to pay less than what is ordered by court (including zero payments). If these noncompliance costs are greater than the loss in utility resulting from paying what is ordered by court, fathers decide to comply with the court order and for such fathers voluntary child support payments are not observed. On the other hand, if the father is paying significantly more or significantly less than the court order amount, I assume that such payments are voluntary.

A large body of literature about child support payment behavior in the United States can be roughly separated into two groups. One group of papers analyzes child support payments by assuming that fathers pay child support voluntarily or simply by ignoring the fact that decision to comply with what is ordered by court and decision how much to pay voluntarily

3If fathers are just paying the amount specified by the child support court order, child support essentially becomes an income tax.
4See Garfinkel et al. 2001 for a list of papers providing empirical evidence about the effects of child support enforcement efforts on child support payments and compliance levels.
5In a sense, I model such fathers using selection framework. My econometric specification also allows for the fact that about 50% of noncustodial fathers do not pay any child support at all.
might be governed by different economic processes (see e.g. Case et al. 2003 or Ermisch and Pronzato 2008). Another group of papers analyze compliance to child support orders and ignore the fact that a significant fraction of fathers would pay positive child support even in the absence of the court order (see Garfinkel et al. 2001 for a review). I attempt to bridge the gap between these two strands of literature by developing a regression model which analyzes voluntary child support payments and compliance to court order simultaneously.

Moreover, previous research most commonly used only information about the custodial parent, who is generally the mother, and her reports about child support income. This by the most part is dictated by data availability, since the large nationally representative datasets like Current Population Survey or the Survey of Income and Program Participation provide detailed information only about custodial mothers’ characteristics and their reports about child support award and payments amounts. Unfortunately, these datasets contain virtually no information about noncustodial fathers’ income and other characteristics. However, Smock and Manning (1997) argue that nonresident parent’s characteristics are more important when describing child support payment behavior than the resident parent’s characteristics. They use matched resident and nonresident parent data and find that including resident parent’s characteristics add very little to the predictive power of child support payment regressions. Thus, having information on the nonresident parents is essential if we want to analyze child support payments and compliance with court orders.

In this paper I use Panel Study of Income Dynamics (PSID) data. To my knowledge, PSID is the only large representative dataset in the US which contains information about child support payments and nonresident fathers’ characteristics as well as characteristics of the other household members. Moreover, the availability of marital and childbearing histories allows me to identify individual’s all biological children from his previous marriages living outside his household and thus “at risk” of receiving child support. The next section of the paper presents a theoretical model which provides motivation for my empirical analysis.

6 Typical household level datasets usually report information only about individuals living within the household.
2 The Theoretical Model

High divorce rates result in a large proportion of children living with one of their biological parents, while the other parent is expected to contribute to child rearing expenses by providing some form of monetary or non-monetary support. Since the mother is the custodial parent in a large majority of child support cases, I use a term “mother” interchangeably with “custodial parent” and “father” with “non-custodial parent”. I assume that both divorced parents care about their children welfare, so child quality remains, in a sense, a public good after parents get divorced (see Weiss and Willis (1985, 1989) for further discussion). As in most theoretical papers, I assume that the mother is solely responsible for making expenditures on children, while fathers can raise children consumption only indirectly through money transfers to the mother.

Following [Del Boca and Flinn 1995] I assume that father is expected to pay at least \(s \) amount of child support which is stipulated by the court order, and failure to do so results in fixed noncompliance cost of \(\vartheta \). These cost are expressed in terms of utils and they could be monetary (such as the penalty if father is “caught” noncomplying) or non-monetary (such as guilt, reduced time spent with the child, etc.). The main difference between my paper and [Del Boca and Flinn] is that I consider fathers who formed new families by either re-marrying or entering a cohabitation relationship, while they assume that fathers remain single. Let \(c_m \), \(c_f \) and \(c_p \) denote private consumption levels of the mother, the father and his new life partner, correspondingly. Also let \(k \) stand for child good expenditures and \(t \) be father’s transfer amount to mother’s household. I assume that individual Utility functions take a simple Cobb-Douglas functional form. The mother maximizes her Utility function subject to the budget constraint:

\[
\max_{c_m,k} U_m = \delta_m \log(c_m) + (1 - \delta_m) \log(k), \quad \text{s.t.} \quad c_m + k = y_m + t, \tag{1}
\]

where \(\delta_i \) is the preference parameter towards private consumption of parent \(i = m, f \). This results in her optimal consumption level of \(c_m^* = \delta_m (y_m + t) \) and child expenditures \(k^* = \)
\((1 - \delta_m) (y_m + t) \).

I assume that the father and his new partner decide how to allocate their resources through a bargaining process - a modeling approach pioneered by [Manser and Brown (1980)] and [McElroy and Horney (1981)]. If reaching the agreement between spouses is not too costly, family members can potentially achieve the cooperative equilibrium. In what follows, I do not consider how the bargaining process takes place and therefore I follow the “Collective” modeling approach as suggested by [Apps and Rees (1997)] and [Chiappori (1988)]. By assumption, this “collective” equilibrium is Pareto efficient, i.e. we cannot improve one spouse’s situation without hurting the other spouse. However, the actual outcome in this collective equilibrium depends on the bargaining power of each spouse, which is captured by parameter \(\mu \).

I assume that father’s new partner does not derive any utility from expenditures on the man’s children from his previous marriage. The cooperative solution can be found by maximizing family’s welfare function, which is formulated as a weighted sum of individual spouses’ utilities, subject to a pooled income budget constraint, and mother’s expenditures on child quality:

\[
\max_{c_f, c_p, t} U_f + \mu U_p = \delta_f \log (c_f) + (1 - \delta_f) \log (k) - \vartheta I \left[t < s \right] + \mu \log (c_p),
\]

\[
s.t. \quad y_f + y_p = t + c_f + c_p, \quad k = (1 - \delta_m) (y_m + t).
\]

where \(I \) is an indicator function, which shows that father’s household incurs noncompliance cost \(\vartheta \) only if father decides to pay less child support than what was ordered by the court.

The solution of the father’s household utility maximization problem is provided in the Appendix A. Optimal voluntary child support transfer value is given by:

\[
t^* = \frac{1 - \delta_f}{1 + \mu} (y_f + y_p) - \frac{\mu + \delta_f}{1 + \mu} y_m
\]

[Chiappori (1992)] was among the first to utilize the fact that finding Pareto efficient intrahousehold allocations is equivalent to maximization of weighted sum of individual utilities, where \(\mu \) can be interpreted as Lagrange multiplier associated with the Pareto efficiency constraint: \(\max U^1 (x_1), s.t. U^2 (x_2) \geq \bar{u}_2 \).
As indicated by equation [3], voluntary child support payment depends on joint father’s and his partner’s income and Pareto weight \(\mu \) that measures the bargaining power of each spouse. In Unitary household decision models this Pareto weight is fixed, while Collective models suggest that it should depend on prices, individual income, and other so-called “distribution factors”. Therefore, testing if the effects of father’s and his partner’s income on child support payments are different is equivalent to testing the Unitary model versus a more flexible Collective modeling approach. This test is generally referred to as the test of “Income Pooling” hypothesis.

Depending on the values of father’s preference and noncompliance cost parameters, father may decide to pay no child support, which I call a “No Payments” case, he might be willing to pay less than the court order amount, which I refer to as a “Partial Payments” case, he might decide to pay exactly what is ordered by court, which I call an “Exact Compliance” case, and finally, he might be willing to pay more than what is ordered by court, which I refer to as an “Over Compliance” case. The solution for all these cases (regimes) is provided in Appendix A and can be summarized by the following set of equation:

1) No Payments \(t = 0 \) \(if \ \delta_f \in (\bar{\delta}, 1] \ and \ \vartheta \in [0, W^{NP} - W^{EC}] \),

2) Partial Payments \(t = t^* < s \) \(if \ \delta_f \in (\bar{\delta}, \delta] \ and \ \vartheta \in [0, W^{PP} - W^{EC}] \),

3) Exact Compliance \(t = s \) \(if \ \delta_f \in (\bar{\delta}, 1] \ and \ \vartheta \in [W^{NP} - W^{EC}, \infty) \),

4) Over Compliance \(t = t^* > s \) \(if \ \delta_f \in [0, \delta] \),

where \(\bar{\delta} \equiv 1 - (1 + \mu) \frac{y_m}{yt} \) and \(\delta \equiv 1 - (1 + \mu) \frac{(y_m + s)}{yt} \) are the threshold values for father’s preference parameter, while \(W^{EC} \), \(W^{PP} \) and \(W^{NP} \) denote indirect utility values (without noncompliance cost) in “Exact Compliance”, “Partial Payments” and “No Payments” case (the actual expressions are provided in Appendix A).

As equation system [4] indicates, we can only observe voluntary child support payment behavior when fathers pay less (including zero payment) or more child support than the court
order amount. When father is complying with the court order, \(t = s \), voluntary child support payment amount, \(t^* \), is not observed, and we can only infer that it is less than or equal to the order amount: \(t^* \leq s \). Therefore, if we want to test the “Income Pooling” hypothesis using child support payments, we will have to account for “selection” of fathers into “Exact Compliance” regime. Moreover, in the empirical part of the paper I also have to control for the fact that a large proportion of fathers choose not to pay any child support. In the next section of this paper I propose an econometric specification, which models fathers’ “selection” into “Exact Compliance” and allows for zero child support payments.

It should be noted, that although I refer to \(\vartheta \) as the “fixed” noncompliance cost, it is not the same for different fathers and it does not have to be constant over time. Following Del Boca and Flinn (1995), by “fixed” I assume that these costs do not depend on the compliance level, \(s - t^* \). We can think of these costs, as the costs of breaking a promise or obligation to pay a certain amount of child support, no matter what is the size of the obligation, or what is the size of arrears.

3 The Econometric Model

Fathers who have high preference towards their non-resident children may choose to pay more support than is specified by the court order. Nevertheless, data suggests that for a lot of fathers court orders exceed their optimal support amounts. Conditionally on fathers voluntarily paying less than the court order amount, the model can be specified as a selection problem, in which fathers who decide to comply with the court order are selected out of the sample (in such cases we don’t observe their voluntary child support payment levels). Fathers will select themselves to this “full compliance” regime if the costs of non-compliance are high and/or the costs of compliance are low (i.e. the utility loss from paying above their optimal amount is low). Moreover, some father’s don’t pay any child support (and some would choose to pay no child support, if enforcement of child support orders was not existent). Therefore, this model is
specified as a system of two (correlated) latent variables, the first one measuring (sometimes unobservable) voluntary child support payments and the second one measuring unobservable cost of noncompliance. Since I have repeated observation per individual, I allow for individual heterogeneity terms using random effects and fixed effects specifications.

3.1 Individual Heterogeneity Specified as Random Effects

Let $y^*_1_{it}$ be the unobserved, or latent, voluntary child support payment amount, while $y^*_2_{it}$ denotes latent variable which measures noncompliance costs (where higher values of $y^*_2_{it}$ indicate lower costs). Also let s_i be individual (predetermined) child support court order amount.

Consider the following model:

$$
\begin{cases}
 y^*_1_{it} = \beta' x_{it} + \sigma \epsilon_{i} + \nu_{it} \\
 y^*_2_{it} = \gamma' z_{it} + \sigma u_{i} + \omega_{it}
\end{cases},
$$

(5)

where \(\begin{pmatrix} \epsilon \\ u \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & \rho \h \\ \rho h & 1 \end{pmatrix} \right) \) are correlated individual heterogeneity terms, while

\(\begin{pmatrix} \omega \\ \nu \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} \rho \sigma_{\nu} & \sigma_{\nu}^2 \\ \rho \sigma_{\nu} & \sigma_{\nu}^2 \end{pmatrix} \right) \) are correlated contemporaneous errors. Both error components are assumed to be uncorrelated with observable independent variables.

We observe actual voluntary child support payment amount, $y_{it} = y^*_1_{it}$, if it is higher than the order amount ($y^*_1_{it} > s_i$) or if its lower than the order amount, and father does not comply ($y^*_1_{it} < s_i, y^*_2_{it} > 0$). If observed child support payment is equal to the order amount ($y_{it} = s_i$), than we know that voluntary child support payment is less or equal to the order amount ($y^*_1_{it} \leq s_i$) and that non-compliance cost are prohibitively high ($y^*_2_{it} \leq 0$), so fathers are paying what is ordered by the court. If voluntary support payment is higher than the order amount, we do not know anything about compliance cost, since for such father compliance issue is irrelevant.
This model is estimated using Maximum Likelihood Estimator (MLE):

$$\hat{\theta}_{MLE} = \arg \max_{\theta} \log L (\theta \mid data),$$

(6)

where θ is the full parameter vector $\theta = [\beta; \gamma; \rho_h; \sigma_\epsilon; \sigma_u; \rho; \sigma_\nu]$, observed $data = [Y; X; Z]$, while $L (\theta \mid data)$ is the likelihood function for the sample.

The probability density function for each observation can be decomposed into four different parts, depending on the observed child support payments:

$$y_{it} = \begin{cases}
0 & \text{if } y_{1it}^* \leq 0 \text{ and } y_{2it}^* > 0; \\
y_{1it}^* & \text{if } y_{1it}^* > 0 \text{ and } y_{1it}^* < s_i \text{ and } y_{2it}^* > 0; \\
s_i & \text{if } y_{1it}^* \leq s_i \text{ and } y_{2it}^* \leq 0; \\
y_{1it}^* & \text{if } y_{1it}^* > s_i.
\end{cases}$$

(7)

Density functions for each of these four cases are derived in Appendix B. The density function for any y_{it}, conditional on individual heterogeneity effects, is the product of the densities for these 4 parts weighted by indicator functions:

$$f (y_{it} \mid u_i, \epsilon_i) = \begin{cases}
\Phi_2 \left(\frac{-\beta' x_{it} - \sigma_\epsilon \epsilon_i}{\sigma_\nu}, \gamma' z_{it} + \sigma_u u_i, -\rho \right) & I(y_{it}=0) \\
\phi \left(\frac{y_{it} - \beta' x_{it} - \sigma_\epsilon \epsilon_i}{\sigma_\nu} \right) & I(0 < y_{it} < s_i) \\
\Phi_2 \left(\frac{s_i - \beta' x_{it} - \sigma_\epsilon \epsilon_i}{\sigma_\nu}, -\gamma' z_{it} - \sigma_u u_i, -\rho \right) & I(y_{it}=s_i) \\
\frac{1}{\sigma_\nu} \phi \left(\frac{y_{it} - \beta' x_{it} - \sigma_\epsilon \epsilon_i}{\sigma_\nu} \right) & I(y_{it}>s_i)
\end{cases}$$

(8)

To get the unconditional densities, we need to “integrate out” individual heterogeneity terms ϵ_i and u_i. Since conditioned on ϵ_i and u_i, the y_{it}s are assumed to be independent, we have

$$f (y_{i1}, y_{i2}, \ldots \mid u_i, \epsilon_i) = f (Y_i \mid u_i, \epsilon_i) = \prod_t f (y_{it} \mid u_i, \epsilon_i)$$

(9)
Then the unconditional distribution is

\[f(Y_i) = E_{u, \epsilon} [f(Y_i | u_i, \epsilon_i)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(Y_i | u_i, \epsilon_i) g(u_i, \epsilon_i) \, du_i \, d\epsilon_i \]

where \(g(u_i, \epsilon_i) \) is a joint pdf, which is assumed to be bivariate normal. This expectation is estimated using Gauss-Hermite quadrature, which essentially “discretizes” this joint pdf by replacing it with joint distribution of discrete random variables with mass points (or nodes of approximation) \(u_m \) and \(\epsilon_l \) and probability weights \(W_{ml} \):

\[f(Y_i) \approx \sum_m \sum_l W_{ml} \prod_t f(y_{it} | u_m, \epsilon_l) \]

In order to assure that \(\sigma^2_\nu, \sigma^2_\epsilon, \text{ and } \sigma^2_u \) are positive, for computational reasons, they are reparameterized as \(\sigma^2_j = \exp(\alpha_j) \), where \(j = \nu, \epsilon, u \). In addition, in order to impose the restriction \((-1 < \rho < 1)\), I reparameterize \(\rho = \frac{1 - \exp(\alpha_\rho)}{1 + \exp(\alpha_\rho)} \). Similarly, \(\rho_h \) is reparameterized as \(\rho_h = \frac{1 - \exp(\alpha_h)}{1 + \exp(\alpha_h)} \). Let \(\tilde{\theta} \) denote the parameter vector without individual heterogeneity correlation parameter:

\[\tilde{\theta} = [\beta; \gamma; \alpha_\rho; \alpha_\nu; \alpha_\epsilon; \alpha_u] . \]

Similarly as in Greene (1998), for computational reasons \(f(Y_i) \) is estimated as:

\[f(Y_i) \approx \sum_m \sum_l W_{ml} \exp \left(\sum_t l_{it} \left(\tilde{\theta} | u_m, \epsilon_l \right) \right) , \]

where \(l_{it} \left(\tilde{\theta} | u_m, \epsilon_l \right) \equiv \log \left(f(y_{it} | u_m, \epsilon_l) \right) \).

Then log-likelihood for the whole sample is

\[l(\theta) = \sum_i l_i(\theta) \approx \sum_i \log \left(\sum_m \sum_l W_{ml} \exp \left(\sum_t l_{it} \left(\tilde{\theta} | u_m, \epsilon_l \right) \right) \right) , \]

where \(l_i(\theta) \equiv \log \left(f(Y_i) \right) \).
The gradient of the sample log-likelihood function is estimated as

$$\frac{\partial l(\theta)}{\partial \theta} = \sum_i \frac{\partial f(Y_i)}{\partial \theta} f(Y_i),$$

where $\frac{\partial f(Y_i)}{\partial \theta}$ is approximated by the following expression:

$$\frac{\partial f(Y_i)}{\partial \theta} \approx \sum_m \sum_l W_{ml} \exp \left(\sum_t l_{it} \left(\tilde{\theta} \mid u_m, \epsilon_l \right) \right) \left(\sum_t \frac{\partial l_{it} \left(\tilde{\theta} \mid u_m, \epsilon_l \right)}{\partial \theta} \right)$$

While expression for $\frac{\partial f(Y_i)}{\partial \alpha_h}$ is given by:

$$\frac{\partial f(Y_i)}{\partial \alpha_h} \approx \sum_m \sum_l C_{ml}^h W_{ml} \exp \left(\sum_t l_{it} \left(\tilde{\theta} \mid u_m, \epsilon_l \right) \right),$$

where $C_{ml}^h = -\frac{\rho_h^2}{2} \left(1 - \frac{u_m^2 + \epsilon_l^2}{1 - \rho_h^2} + \frac{u_m \epsilon_l}{\rho_h} \right)$. Expression for $\frac{\partial l_{it} \left(\tilde{\theta} \mid u_m, \epsilon_l \right)}{\partial \tilde{\theta}}$ for each of the four compliance cases is provided in Appendix B.

Maximum Likelihood parameters are found by setting the gradients equal to 0, i.e. by solving the likelihood equation:

$$\frac{\partial \log L}{\partial \theta} = 0$$

The asymptotic covariance matrix of the estimated coefficients is computed using the BHHH estimator, which is estimated as the sum of the outer products of the gradients. The reparameterized coefficients and their standard errors are estimated using the Delta method.

3.2 Fixed Effects estimation

Alternatively, we can solve the model specified in equation (5), where σ_ϵ and σ_u is set to 1, using Fixed Effects (FE) estimation. When time dimension is fixed, parameter estimates will not be consistent even in large panel data samples, since as the number of observations increases, so does the number of parameters to be estimated (incidental variables problem). However, when
T is sufficiently large, the bias might be small and of little practical importance, especially if regressions do not include lagged dependent variables (see [Heckman 1981] and [Honore 1993] for evidence using Monte Carlo simulations for Fixed Effects Probit and Tobit models). The main advantage of the FE is that we do not have to assume that unobserved individual heterogeneity is uncorrelated with our regressors, which is a maintained assumption when estimating the model using Random Effects specification as in the previous section.

When individual heterogeneity terms are estimated as Fixed Effect, the sample log-likelihood of the model becomes the following:

$$l(\theta, \eta_1, \ldots, \eta_N) = \sum_i l_i(\theta, \eta_i) = \sum_i \sum_t l_{it}(\theta, \eta_i),$$ \hspace{1cm} (18)$$

where $\theta = [\beta; \gamma; \sigma_\nu]$, $\eta_i = [\epsilon_i; u_i]$, while $l_{it}(\theta, \eta_i)$ is as defined in equation (36) in Appendix B.

We can estimate this model by maximizing concentrated log-likelihood function, where individual fixed effects, η_i, are “concentrated out” of the log-likelihood. This is accomplished by finding the MLE of η_i for given θ:

$$\hat{\eta}_i(\theta) = \arg\max_{\eta_i} l_i(\theta, \eta_i),$$ \hspace{1cm} (19)$$

and then substituting $\hat{\eta}_i(\theta)$ into the sample log-likelihood and maximizing it with respect to θ:

$$\hat{\theta} = \arg\max_{\theta} \sum_i l_i(\theta, \hat{\eta}_i(\theta))$$ \hspace{1cm} (20)$$

This two step estimation procedure is iterated by re-estimating η_i for given $\hat{\theta}$ and then estimating θ for new $\hat{\eta}_i$. This iteration is continued until the change in $\hat{\theta}$ is smaller than some specified criterion.

Denote score functions $d_{\eta_i}(\theta, \eta_i) \equiv \frac{\partial l_{it}(\theta, \eta_i)}{\partial \eta_i}$ and $d_{\theta i}(\theta, \eta_i) \equiv \frac{\partial l_{it}(\theta, \eta_i)}{\partial \theta}$. Expressions for these derivatives are defined similarly as for $\partial l_{it}(\tilde{\theta} | u_m, \epsilon_i) / \partial \tilde{\theta}$, which are given in the Appendix B.
Then $\hat{\eta}_i(\theta)$ is estimated by solving

$$
\frac{\partial l_{\text{it}}(\theta, \eta_i)}{\partial \eta_i} = 0, \text{ for } i = 1, \ldots, N
$$

While $\hat{\theta}$ solves the following first order conditions

$$
\sum_i \left[d_{\theta i}(\theta, \hat{\eta}_i(\theta)) + \frac{\partial \hat{\eta}_i(\theta)}{\partial \theta} d_{\eta i}(\theta, \hat{\eta}_i(\theta)) \right] = \sum_i d_{\theta i}(\theta, \hat{\eta}_i(\theta)) = 0
$$

Variance-Covariance matrix of $\hat{\theta}$ is estimated as minus the inverse of the Hessian matrix. Following Carro (2007), the Hessian of the concentrated log-likelihood is adjusted for the fact that individual fixed effects are estimated (See Appendix C for derivation):

$$
\frac{\partial^2 l^C(\theta)}{\partial \theta \partial \theta'} = \sum_i \left[d_{\theta \theta i}(\theta, \hat{\eta}_i(\theta)) - d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta)) d_{\eta \eta i}(\theta, \hat{\eta}_i(\theta))^{-1} d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta))' \right],
$$

where $d_{\theta \theta i}(\theta, \eta_i) \equiv \sum_t \frac{\partial^2 l_{\text{it}}(\theta, \eta_i)}{\partial \theta \partial \theta'}$, $d_{\theta \eta i}(\theta, \eta_i) \equiv \sum_t \frac{\partial^2 l_{\text{it}}(\theta, \eta_i)}{\partial \theta \partial \eta_i'}$ and $d_{\eta \eta i}(\theta, \eta_i) \equiv \sum_t \frac{\partial^2 l_{\text{it}}(\theta, \eta_i)}{\partial \eta_i \partial \eta_i'}$ are estimated by numerically differentiating score functions. The adjustment factor (the second term in equation [23]) is set to 0 for a few cases when individual effect in noncompliance equation (the second element of η_i) is not identified. This happens when fathers always over-comply (pay more than what is ordered by court).

4 Data and Sample Construction

I estimate the model using data from the Panel Study of Income Dynamics (PSID) survey. PSID is a longitudinal survey of a representative sample of US households started in 1968 and is still ongoing. I use both the nationally representative sample and the low-income families sample in the analysis. One of the main advantages of this data for the purpose of this study is that it provides detailed information on individual and household characteristics, including income, employment status, and family structure.
study is the availability of detailed childbirth and marriage histories as well as a plethora of yearly socio-economic indicators. Information about household head’s and wife’s annual child support payments is available since 1985 and refers to the previous calendar year. I restrict the sample to include only fathers who are household heads and who are living together with another woman who is not a child’s mother.

Noncustodial parents are obliged to provide child support until age 18 or 19 (a few states have a termination clause upon emancipation of the minor) (National Conference of State Legislatures 2007). I use childbirth and marriage histories to determine biological children from previous marriages, who are below age 18, and who are living outside the father’s household and thus are “at risk” of receiving child support. Coresidence information is reported at the time of the interview, while most socio-economic variables, including income and child support payments, refer to the previous calendar year. Matching coresidence information to the income and support payment information of the same calendar year is problematic, since starting from 1997, PSID became biennial. Moreover, any changes in family structure and coresidence status recorded at the time of the interview could have happened at any time in the preceding year (Page and Stevens 2004). Therefore, I ignore the different time reference and match family coresidence status as well as child support and income data from the same survey year.

PSID contains data on child support payments, but no information about child support court orders. Historically, child support orders were based on the perceived child’s needs and father’s ability to pay, and were set on a case by case basis. This often resulted in relative

9PSID defines both head’s legal wife and his cohabiting partner as head’s wife and collects information about her. Since PSID dataset defines cohabitation as a “long-term” relationship, they do not include first year partners as cohabiters. Thus, I redefine individuals as cohabiters if they are present in the household in the current year and are defined as cohabiting in the next year.

10Some states may also require fathers to (at least) partially provide for college education cost. Since such requirement is not universal and I do not actually observe the cost of postsecondary schooling, I consider child support payments only until a child is 18.

11When I match current survey year’s coresidence status information and next year’s lagged income information, in many cases, I lose one year of observations per individual, which results in smaller sample sizes, especially in Fixed Effects estimation. Regression analysis when using this matching approach leads to qualitatively similar coefficients but larger standard errors. Most of the Fixed Effects coefficients become statistically insignificant.
inconsistency among cases and somewhat low orders (National Women’s Law Center 2002).

The Child Support Enforcement amendments of 1984 obligated each state to develop a numeric guideline which could be used to calculate child support orders. Moreover, the Family Support Act of 1988 set the requirement for the States to start using these guidelines universally, except for special cases. In addition, all States were required to enact statutes providing for the use of improved enforcement mechanisms, like mandatory income withholding or State income tax refund interceptions (National Women’s Law Center 2002).

Since starting from the late 80’s courts have to use guidelines to set order amounts, I use State specific guideline amounts as a proxy for child support orders. I am predicting guideline amounts using data from Pirog et al. (1998) paper which contains State level child support guideline amounts for hypothetical income scenarios for years 1991, 1993, 1995 and 1997, and similar data from Morgan and Lino (1999) paper for the year 1999. I interpolate and extrapolate the implied guideline schedules for the remaining years in my data sample. I use average father’s income around the time of divorce or separation and information about father’s state and number of nonresident dependent children in each survey year to predict child support court order. This is equivalent to assuming that order amount is adjusted to reflect the changes in the number of nonresident dependent children and state guideline schedules but is not adjusted for changes in father’s income. Moreover, guidelines specify adjustments to account for shared-parenting time, child care and medical expenses. However, such information for nonresident children is not available in the PSID dataset, so my predicted court order will involve a significant measurement error.

12 Although federal laws require states to review and, if found appropriate, to modify guideline formulas at least once every 4 years, such modifications are not done frequently and some states have not updated their guideline formulas for years (Venohr and Griffith 2005).

13 When there is a significant change in financial situation of custodial or noncustodial parent, either of them can request child support award to be modified; however, such modifications or eliminations of awards are rare (Peterson and Nord 1990). Although, OCSE periodically reviews child support orders for mother who receive welfare payments, my sample consist mostly of non-welfare cases. Only 5% of mothers in the matched mothers and fathers sample report receiving AFDC (or TANF after 1996) income.

14 A significant portion of mothers choose not to obtain a child support award. Since I do not have information if the mother actually was granted a child support award, for such cases the predicted guideline amount will measure the potential court order amount and not the actual award. These cases are still consisted with our model where we allow a positive court order to exist and implicit noncompliance cost to be zero.
Table 1: Compliance with child support orders

<table>
<thead>
<tr>
<th>Compliance Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>No payments</td>
<td>48%</td>
</tr>
<tr>
<td>Partial Payments</td>
<td>32%</td>
</tr>
<tr>
<td>Full Compliance</td>
<td>14%</td>
</tr>
<tr>
<td>Over Compliance</td>
<td>6%</td>
</tr>
</tbody>
</table>

Sample size: 3414 person-years, 957 individuals. Observations are weighted using PSID Household weights. Source: Author’s estimation using 1985-2005 PSID data

To identify cases where fathers just comply with child support orders, as opposed to choosing payment amounts voluntarily, I compare the actual payment amount with the order amount. I assume that fathers are fully complying if their child support payments are close to the predicted court order amount (within 20% of the order). As table 1 shows, about 14% of fathers are identified as fully complying with the court order and 6% are predicted to be voluntarily paying more than ordered by court. The percentage of fathers who are paying at least what is ordered by court (14+6=20%) is somewhat lower than suggested by nationally representative CPS data, since as table 2 indicates, about 30% of mothers are receiving full payments. This again suggest that I might be misclassifying some cases when fathers pay voluntarily vs. simply complying with court orders. I discuss the implications of such misclassification in the last section of the paper.

In all regressions I use total money income, which is the sum of labor, asset, and transfer income. Although in some cases it might be difficult to assign asset income to a specific individual in the household, the use of just labor income might not be satisfactory, since child support orders are based on father’s total income. Extreme child support and income values are censored to lower the impact of possible measurement error, and I drop observations

15Note that by survey design “Full compliance” category in CPS includes fathers who actually “over-comply”, so we cannot use CPS data to infer what percentage of fathers are paying more than what is ordered by court. Smaller scale dataset containing actual order and payment information suggest that a considerable fraction of fathers do. For example, Del Boca and Flinn (1995) using Court record data from Wisconsin for years 1980-1982 estimated that five months after the divorce decree 40% of Noncustodial fathers could be classified as exact compliers and 11% paid significantly more than ordered by the court.

16If the owner of an asset, which is the source of income, is not reported, I divide such income to head and wife of the household equally.
Table 2: Ever married Custodial Mothers by Child Support Receipts Status in 2002 April CPS

<table>
<thead>
<tr>
<th></th>
<th>Number in 1000’s</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ever married Custodial mothers</td>
<td>7768</td>
<td>100%</td>
</tr>
<tr>
<td>With child support agreements or awards</td>
<td>5276</td>
<td>68%</td>
</tr>
<tr>
<td>Due child support payments in 2003</td>
<td>4640</td>
<td>60%</td>
</tr>
<tr>
<td>Received full payments</td>
<td>2313</td>
<td>30%</td>
</tr>
<tr>
<td>Received part payments</td>
<td>1316</td>
<td>17%</td>
</tr>
<tr>
<td>No payments or no award</td>
<td>4139</td>
<td>53%</td>
</tr>
</tbody>
</table>

source: Author’s estimation using data from Table 8 in Grall (2006)

where total reported father’s household income is lower than $100 a month (in 2000 dollars). After excluding observation with missing information on main characteristics like income, child support payment amount, or race, I am left with 957 individuals with at most 17 years of data resulting in 3414 person-years observations.

Table 3 shows descriptive statistics of the main sample. Throughout the paper, all monetary amounts are expressed in terms of 2000 dollars. Including zero payments, average child support payments are less than $3000, which is about 4.3% of total household income. More than half of all fathers pay some child support, so paying fathers, on average, transfer almost $5600 per year. More than 40% of fathers have at least four-year college degree and about 75% of them are married to their new life partner. Other variables used in empirical analysis include the number of father’s biological children and the number of other children in the new household, years since divorce or separation, and a dummy for more than one dependent children living outside father’s household.17

I assume that the following variables affect non-compliance cost, but not the actual child support payment: if father is self employed; if father working is in public sector; and state level child support enforcement characteristics.18 I use three variables to measure the strength

17As implied by the theoretical model, father’s child support payments should be affected by mother’s (custodial parent’s) income and her other characteristics. Unfortunately, mother’s time invariant characteristics are available for less than half of father’s observations in my sample, and time varying - only for 20% of person-year observations. PSID only follows the so called sample individuals, who are from the original 1968 sample or are offspring of the original sample members. Thus, in most cases, only a father or only a mother can be a sample member in later survey years. So, in the sample of nonresident fathers, mothers’ information, in general, will not be available.

18Thus these variables are among Z’s, but excluded from X’s. This exclusion restriction helps identification
<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std.Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child Support Payment Amount (1,000’s)</td>
<td>2.90</td>
<td>4.04</td>
</tr>
<tr>
<td>Order amount (1,000’s)</td>
<td>7.25</td>
<td>4.98</td>
</tr>
<tr>
<td>Total Income (10,000’s)</td>
<td>6.75</td>
<td>4.05</td>
</tr>
<tr>
<td>Father’s Income (10,000’s)</td>
<td>4.37</td>
<td>2.98</td>
</tr>
<tr>
<td># of own children in the HH</td>
<td>0.57</td>
<td>0.85</td>
</tr>
<tr>
<td># of other children in the HH</td>
<td>0.58</td>
<td>0.89</td>
</tr>
<tr>
<td>Years since marriage ended</td>
<td>8.29</td>
<td>4.00</td>
</tr>
<tr>
<td>OCSE expenditures per single mother (1,000’s)</td>
<td>0.40</td>
<td>0.21</td>
</tr>
<tr>
<td>If father married again</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Proportion paying some child support</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>If two or more dependent children outside the HH</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>Proportion non-white</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Proportion with college degree</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Proportion self employed</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Proportion working in public sector</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>If state has immediate income withholding</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>If state adopted numerical guidelines</td>
<td>0.74</td>
<td></td>
</tr>
</tbody>
</table>

Sample size: 3414 person-years, 957 individuals. Observations are weighted using PSID Household weights. Money amounts are in Constant 2000 dollars.

of child support enforcement policy: a dummy indicating if a state has immediate income withholding from non-resident parents’ earnings when these parents miss or are likely to miss payments; a dummy for presumptive guidelines – if states are required to use numeric guidelines for setting child support awards; and state expenditures on enforcement – the expenditures reported by OCSE divided by the number of single-mother families in a particular state (see Aizer and McLanahan 2006, Case et al. 2003, Garfinkel et al. 2001, Freeman and Waldfogel 2001, or Sorensen, Elaine and Halpern, Ariel 1999 for further discussion about the use of these variables).
5 Results

Results from the model without individual heterogeneity (Pooled) and the model where individual heterogeneity is specified as random effects (RE) are shown in Table 4. Estimated variances of heterogeneity terms in both voluntary payments and noncompliance selection regressions are highly significant, which indicates the presence of heterogeneity effects. Coefficient estimates from both Pooled and RE regressions indicate significantly positive effects of total household income and individual father’s income on voluntary child support payments, which suggests that increase in father’s income has a different effect than increase in his partner’s income, which rejects the “income pooling” hypothesis and is consistent with Ermisch and Pronzato (2008) results. Moreover, white, college educated and re-married fathers would voluntarily pay more child support, although education does not have any effect on noncompliance cost after accounting for income. However, the difference in the effect of father and his partner incomes on child support payment is smaller in Random Effects regression, and it completely goes away in the Fixed Effects Specification.

Results from the Fixed Effects regression are listed in Table 5. To lower the possible inconsistency of the Maximum Likelihood estimates I restrict the sample to individuals who have at least 4 years of observations, which results, on average, in 7 observations per individual. As Table 5 shows, when the model is estimated assuming FE specification, father’s individual income effect is very small and statistically insignificant. This could be interpreted as a sign that if families behave as predicted by cooperative bargaining model, then yearly variation in income might not be a good indicator of differences in bargaining powers, i.e. “permanent” income component or potential income matters more. Alternatively, this could suggest a bias in Pooled and RE models due to unobserved heterogeneity, if for example, more productive fathers are also more responsible and care about their children. In this case FE will be unbiased and would imply that families actually pool their resources.
Table 4: Full Sample Estimation Results

<table>
<thead>
<tr>
<th>Variables</th>
<th>No Individual Heterogeneity</th>
<th>Random Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1. Child Support Payment Amount (1,000’s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-4.851** (0.354)</td>
<td>-4.006** (0.532)</td>
</tr>
<tr>
<td>Total Income (10,000’s)</td>
<td>0.238** (0.057)</td>
<td>0.236** (0.079)</td>
</tr>
<tr>
<td>Father’s Income (10,000’s)</td>
<td>0.450** (0.070)</td>
<td>0.275** (0.100)</td>
</tr>
<tr>
<td># of own children in the HH</td>
<td>-0.472** (0.118)</td>
<td>-0.318+ (0.183)</td>
</tr>
<tr>
<td># of other children in the HH</td>
<td>-0.390** (0.104)</td>
<td>-0.413* (0.168)</td>
</tr>
<tr>
<td>If father married again</td>
<td>1.003** (0.232)</td>
<td>0.974** (0.329)</td>
</tr>
<tr>
<td>Years since previous marriage ended</td>
<td>-0.137** (0.024)</td>
<td>-0.139** (0.035)</td>
</tr>
<tr>
<td>If two or more dependent children outside the HH</td>
<td>2.142** (0.204)</td>
<td>1.662** (0.302)</td>
</tr>
<tr>
<td>If father not white</td>
<td>-2.114** (0.229)</td>
<td>-2.070** (0.419)</td>
</tr>
<tr>
<td>If father has college degree</td>
<td>1.431** (0.191)</td>
<td>1.941** (0.378)</td>
</tr>
<tr>
<td>Equation 2. $y_2 = 1$ if does not comply with child support order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.162** (0.116)</td>
<td>1.610** (0.205)</td>
</tr>
<tr>
<td>Total Income (10,000’s)</td>
<td>-0.032* (0.016)</td>
<td>-0.049+ (0.026)</td>
</tr>
<tr>
<td>Father’s Income (10,000’s)</td>
<td>-0.038+ (0.019)</td>
<td>-0.023 (0.032)</td>
</tr>
<tr>
<td># of own children in the HH</td>
<td>0.119** (0.043)</td>
<td>0.106 (0.070)</td>
</tr>
<tr>
<td># of other children in the HH</td>
<td>0.107** (0.030)</td>
<td>0.123* (0.052)</td>
</tr>
<tr>
<td>If father married again</td>
<td>-0.011 (0.063)</td>
<td>-0.004 (0.102)</td>
</tr>
<tr>
<td>Years since previous marriage ended</td>
<td>0.052** (0.008)</td>
<td>0.057** (0.013)</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Variables</th>
<th>No Individual Heterogeneity</th>
<th>Random Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>If two or more dependent children outside the HH</td>
<td>-0.180**</td>
<td>-0.194*</td>
</tr>
<tr>
<td>If father not white</td>
<td>(0.055)</td>
<td>(0.089)</td>
</tr>
<tr>
<td>If father has college degree</td>
<td>0.010</td>
<td>-0.039</td>
</tr>
<tr>
<td>OCSE expenditures per single mother</td>
<td>0.007</td>
<td>-0.193</td>
</tr>
<tr>
<td>If state has immediate income withholding</td>
<td>0.224*</td>
<td>0.255+</td>
</tr>
<tr>
<td>If state adopted numerical guidelines</td>
<td>-0.236*</td>
<td>-0.279+</td>
</tr>
<tr>
<td>If father self employed</td>
<td>0.427**</td>
<td>0.434**</td>
</tr>
<tr>
<td>If father works in public sector</td>
<td>-0.302**</td>
<td>-0.373**</td>
</tr>
<tr>
<td>(\sigma_v)</td>
<td>5.919**</td>
<td>4.376**</td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.419+</td>
<td>0.432**</td>
</tr>
<tr>
<td>(\sigma_\epsilon)</td>
<td>(0.253)</td>
<td>(0.148)</td>
</tr>
<tr>
<td>(\sigma_u)</td>
<td>4.063**</td>
<td>(1.538)</td>
</tr>
<tr>
<td>(\rho_h)</td>
<td>0.776**</td>
<td>(0.131)</td>
</tr>
<tr>
<td>(\rho_h)</td>
<td>-0.349+</td>
<td>-0.349+</td>
</tr>
<tr>
<td>(\rho_h)</td>
<td>(0.188)</td>
<td>(0.188)</td>
</tr>
<tr>
<td>Log-L</td>
<td>-5839.8544</td>
<td>-5558.0768</td>
</tr>
<tr>
<td>Observations</td>
<td>3414</td>
<td></td>
</tr>
<tr>
<td>Individuals</td>
<td>957</td>
<td></td>
</tr>
</tbody>
</table>

Notes: + \(p < 0.1\), * \(p < 0.05\), ** \(p < 0.01\)
Standard errors are estimated using BHHH (or OPG) estimator. Standard errors for reparameterized coefficients are estimated using Delta method.
Source: Author’s estimation using 1985-2005 PSID data
Table 5: Estimation Results for Individuals Who Have At Least 4 Years of Observations

<table>
<thead>
<tr>
<th>Variables</th>
<th>No Individual Heterogeneity</th>
<th>Random Effects</th>
<th>Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1. Child Support Payment Amount (1,000’s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-5.141**</td>
<td>-4.346**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.398)</td>
<td>(0.702)</td>
<td></td>
</tr>
<tr>
<td>Total Income (10,000’s)</td>
<td>0.389**</td>
<td>0.351**</td>
<td>0.253**</td>
</tr>
<tr>
<td></td>
<td>(0.050)</td>
<td>(0.064)</td>
<td>(0.082)</td>
</tr>
<tr>
<td>Father’s Income (10,000’s)</td>
<td>0.268**</td>
<td>0.121</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td>(0.082)</td>
<td>(0.111)</td>
<td>(0.117)</td>
</tr>
<tr>
<td># of own children in the HH</td>
<td>-0.635**</td>
<td>-0.357+</td>
<td>-0.256</td>
</tr>
<tr>
<td></td>
<td>(0.130)</td>
<td>(0.202)</td>
<td>(0.343)</td>
</tr>
<tr>
<td># of other children in the HH</td>
<td>-0.408**</td>
<td>-0.388+</td>
<td>-0.079</td>
</tr>
<tr>
<td></td>
<td>(0.126)</td>
<td>(0.222)</td>
<td>(0.359)</td>
</tr>
<tr>
<td>If father married again</td>
<td>1.428**</td>
<td>1.280**</td>
<td>0.839</td>
</tr>
<tr>
<td></td>
<td>(0.289)</td>
<td>(0.464)</td>
<td>(0.544)</td>
</tr>
<tr>
<td>Years since previous marriage ended</td>
<td>-0.141**</td>
<td>-0.145**</td>
<td>-0.116*</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.043)</td>
<td>(0.058)</td>
</tr>
<tr>
<td>If two or more dependent children outside the HH</td>
<td>2.080**</td>
<td>1.459**</td>
<td>0.830+</td>
</tr>
<tr>
<td></td>
<td>(0.232)</td>
<td>(0.369)</td>
<td>(0.477)</td>
</tr>
<tr>
<td>If father not white</td>
<td>-2.481**</td>
<td>-2.521**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.281)</td>
<td>(0.587)</td>
<td></td>
</tr>
<tr>
<td>If father has college degree</td>
<td>1.195**</td>
<td>1.975**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.240)</td>
<td>(0.469)</td>
<td></td>
</tr>
<tr>
<td>Equation 2. (y_2 = 1) if does not comply with child support order</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1.042**</td>
<td>1.572**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.135)</td>
<td>(0.262)</td>
<td></td>
</tr>
<tr>
<td>Total Income (10,000’s)</td>
<td>-0.029+</td>
<td>-0.052*</td>
<td>-0.129**</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.026)</td>
<td>(0.038)</td>
</tr>
<tr>
<td>Father’s Income (10,000’s)</td>
<td>-0.042*</td>
<td>-0.013</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.038)</td>
<td>(0.053)</td>
</tr>
<tr>
<td># of own children in the HH</td>
<td>0.116*</td>
<td>0.066</td>
<td>-0.040</td>
</tr>
<tr>
<td></td>
<td>(0.047)</td>
<td>(0.086)</td>
<td>(0.136)</td>
</tr>
<tr>
<td># of other children in the HH</td>
<td>0.102**</td>
<td>0.098</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.075)</td>
<td>(0.112)</td>
</tr>
<tr>
<td>If father married again</td>
<td>0.021</td>
<td>-0.016</td>
<td>-0.208</td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.135)</td>
<td>(0.197)</td>
</tr>
<tr>
<td>Years since previous marriage ended</td>
<td>0.059**</td>
<td>0.072**</td>
<td>0.101**</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.017)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>If two or more dependent children outside the HH</td>
<td>-0.121+</td>
<td>-0.100</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.108)</td>
<td>(0.173)</td>
</tr>
<tr>
<td>If father not white</td>
<td>0.353**</td>
<td>0.427+</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Variables</th>
<th>No Individual Heterogeneity</th>
<th>Random Effects</th>
<th>Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>If father has college degree</td>
<td>(0.104)</td>
<td>(0.221)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.060</td>
<td>0.033</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.074)</td>
<td>(0.161)</td>
<td></td>
</tr>
<tr>
<td>OCSE expenditures per single mother</td>
<td>-0.119</td>
<td>-0.553+</td>
<td>-0.838*</td>
</tr>
<tr>
<td></td>
<td>(0.165)</td>
<td>(0.284)</td>
<td>(0.364)</td>
</tr>
<tr>
<td>If state has immediate income withholding</td>
<td>0.180</td>
<td>0.185</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.165)</td>
<td>(0.219)</td>
</tr>
<tr>
<td>If state adopted numerical guidelines</td>
<td>-0.203+</td>
<td>-0.217</td>
<td>-0.300</td>
</tr>
<tr>
<td></td>
<td>(0.105)</td>
<td>(0.177)</td>
<td>(0.216)</td>
</tr>
<tr>
<td>If father self employed</td>
<td>0.366**</td>
<td>0.325+</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.179)</td>
<td>(0.226)</td>
</tr>
<tr>
<td>If father works in public sector</td>
<td>-0.325**</td>
<td>-0.499**</td>
<td>-1.077**</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.174)</td>
<td>(0.321)</td>
</tr>
<tr>
<td>σ_v</td>
<td>5.941**</td>
<td>4.488**</td>
<td>3.915**</td>
</tr>
<tr>
<td></td>
<td>(1.864)</td>
<td>(0.768)</td>
<td>(0.870)</td>
</tr>
<tr>
<td>ρ</td>
<td>0.389</td>
<td>0.383+</td>
<td>0.308</td>
</tr>
<tr>
<td></td>
<td>(0.268)</td>
<td>(0.196)</td>
<td>(0.243)</td>
</tr>
<tr>
<td>σ_{ϵ}</td>
<td>3.930*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.806)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_u</td>
<td>0.828**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.164)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_h</td>
<td>-0.401*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.201)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-L</td>
<td>-4122.0350</td>
<td>-3880.6680</td>
<td>-3177.8776</td>
</tr>
<tr>
<td>Observations</td>
<td>2385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individuals</td>
<td>377</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: + $p < 0.1$, * $p < 0.05$, ** $p < 0.01$

Standard errors are estimated using BHHH (or OPG) estimator. Standard errors for reparameterized coefficients are estimated using Delta method.

Source: Author’s estimation using 1985-2005 PSID data
Estimated coefficients in tables 4 and 5 measure the marginal effects of independent variables on the latent voluntary child support payment, y^*_1. Since fathers cannot make negative child support payments, marginal effects of independent variables on the actual voluntary payments, $\tilde{y}_1 \equiv \max(0, y^*_1)$, are of greater interest. Marginal effects of x on \tilde{y}_1, conditional on individual heterogeneity, ϵ, are given by:

$$\frac{\partial E[\tilde{y}_1|x, \epsilon]}{\partial x} = \Phi \left(\frac{\hat{\beta}'x + \sigma_\epsilon \epsilon}{\sigma_\nu} \right) \hat{\beta},$$

(24)

where individual subscripts are dropped for notational simplicity (see Cameron and Trivedi 2005, p. 542 for derivation). We can estimate unconditional marginal effects for each observation by taking expectation over ϵ of equation (24) and evaluating x’s at their actual values:

$$\frac{\partial E\left[E[\tilde{y}_1|x, \epsilon]\right]}{\partial x} \approx \sum W_l \Phi \left(\frac{\hat{\beta}'x + \sigma_\epsilon \epsilon_l}{\sigma_\nu} \right) \hat{\beta},$$

(25)

where expectation over individual heterogeneity term is approximated using Gauss-Hermite quadrature with nodes ϵ_l and weights W_l. Then average marginal effects are estimated by taking simple average over individual marginal effects. Marginal effects for specification with no heterogeneity are estimated by setting $\sigma_\epsilon = 0$ and for Fixed Effects regression by setting $\sigma_\epsilon = 1$ in equation (24).

Estimated marginal effects are reported in table 6. As the table indicates, $10,000 dollar increase in father’s household annual income, on average, raises voluntary child support payments by $100 per year. If increase in household income was entirely because of higher father’s income, average child support is higher by additional $170, as suggested by the Pooled regression, or it is higher by $120, according to the Random Effects Regression. Fixed effects specification suggests no differential effect of father’s individual income. Child support pay-

19One could also estimate marginal effects of observed child support payments, y, conditional on noncompliance (which would involve more complicated expressions); however, I am interested in voluntary child support payments behavior, and not in the observed payment amounts.

20Note, that we should actually use conditional $\hat{\beta}(\epsilon_l)$, i.e. we should estimate MLE $\hat{\beta}$ for each value of ϵ_l. I am planning to implement this correction in the next version of the paper.
Table 6: Marginal Effects

<table>
<thead>
<tr>
<th>Variables</th>
<th>No Individual Heterogeneity</th>
<th>Random Effects</th>
<th>Fixed Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation 1. Child Support Payment Amount (1,000's)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Income (10,000's)</td>
<td>0.09**</td>
<td>0.09**</td>
<td>0.10**</td>
</tr>
<tr>
<td>Father’s Income (10,000's)</td>
<td>0.17**</td>
<td>0.12**</td>
<td>0.01</td>
</tr>
<tr>
<td># of own children in the HH</td>
<td>-0.18**</td>
<td>-0.11+</td>
<td>-0.10</td>
</tr>
<tr>
<td># of other children in the HH</td>
<td>-0.15**</td>
<td>-0.15*</td>
<td>-0.03</td>
</tr>
<tr>
<td>If father married again</td>
<td>0.38**</td>
<td>0.38**</td>
<td>0.34</td>
</tr>
<tr>
<td>Years since previous marriage ended</td>
<td>-0.05**</td>
<td>-0.05**</td>
<td>-0.05*</td>
</tr>
<tr>
<td>If two or more dependent children outside the HH</td>
<td>0.82**</td>
<td>0.67**</td>
<td>0.33+</td>
</tr>
<tr>
<td>If father not white</td>
<td>-0.81**</td>
<td>-0.82**</td>
<td></td>
</tr>
<tr>
<td>If father has college degree</td>
<td>0.55**</td>
<td>0.79**</td>
<td></td>
</tr>
<tr>
<td>Person-years</td>
<td>3414</td>
<td>3414</td>
<td>2385</td>
</tr>
<tr>
<td>Individuals</td>
<td>957</td>
<td>957</td>
<td>377</td>
</tr>
</tbody>
</table>

Notes: + p < 0.1, * p < 0.05, ** p < 0.01
Source: Author’s estimation using 1985-2005 PSID data

Child support payments decrease with additional children in the father’s household and with additional years since divorce or separation. They are significantly higher if a father is white or has at least college degree. Finally, if father is married to his new partner, as opposed to just cohabiting, child support payments go up by almost $400 per year. This potentially indicates that fathers who are more responsible individuals and care about their children are more attractive marriage partners.
6 Concluding Remarks

I find that higher share of father’s income in household income increases the child support payment amounts. This finding rejects income pooling and is consistent with Family Bargaining models. However, after controlling for unobserved individual heterogeneity in RE specification, the differential effect of father’s income significantly declines, while FE specification suggests that distribution of individual incomes plays no role after controlling for total household income.

I hypothesize that the difference in RE and FE specification results suggests that permanent (or potential) and not transitory income influences spouses’ bargaining power21 On the other hand, if unobserved individual heterogeneity in father’s preferences for his children’s welfare is correlated with his productivity and thus his income, FE specification is more appropriate, since Pooled and RE estimates will be biased. In the latter case, I cannot reject income pooling, which suggests that the commonly used Unitary Household model might be an appropriate modeling choice.

However, this study has some important limitations. One of the weaknesses of the Maximum Likelihood estimation used in this paper is its heavy reliance on distributional assumption about the error terms, which results in inconsistent estimates if errors are heteroscedastic or nonnormal22 \cite{CameronTrivedi2005}. Another weakness of my analysis is the fact that I do not observe actual child support court orders, and I use guideline amount as a proxy for court order amount. Thus, I might be misclassifying some cases when fathers pay voluntarily vs. just complying with court orders. Monte Carlo experiments suggest that such misclassification results in biased coefficients.

In the next version of the paper I am planning to address this issue in two ways. Firstly, I am planning to use actual State guideline formulas (and not just predicted guideline amounts)

21 However, other indicators of the differences in permanent (potential) income, such as spouses’ relative age or relative education, were not statistically significant in RE specification.

22 Regression errors could be modelled to be heteroscedastic within this maximum likelihood estimation framework.
to estimate child support court orders. This involves coding guideline formulas or schedules which differ by State and vary over years, however, it will be a significantly better measure of court order amounts. Secondly, I am planning to modify my regression framework to allow for the measurement error in the “observed” court order, and thus estimate the measurement error effect. I believe that these modifications will significantly improve my estimation framework and will promote confidence in my results.

References

23If data does not allow actual identification of the parameters of the measurement error distribution function, I will be still able to see if the results change by assuming different parameter values of the measurement error distribution function.

Panel Study of Income Dynamics (2006). 1968-2005 Individual and Family public use datasets. Produced and distributed by the University of Michigan with primary funding from the National Science Foundation, the National Institute of Aging, and the National Institute of Child Health and Human Development. Ann Arbor, MI.

Appendix A. Solving Father’s Household Utility Maximization Problem

The father and his new partner maximize family’s welfare function, which is a weighted sum of individual spouses’ utilities, subject to a pooled income budget constraint and mother’s expenditures on child quality:

\[
\max_{c_f, c_p, t} U_f + \mu U_p = \delta_f \log (c_f) + (1 - \delta_f) \log (k) - \vartheta I [t < s] + \mu \log (c_p),
\]

s.t. \[y_f + y_p = t + c_f + c_p, \]
\[k = (1 - \delta_m) (y_m + t). \]
\((26) \)

Denote the sum of mother’s and father’s household income as \(y_T = y_m + y_f + y_p \). Then, assuming internal solution (i.e. assuming that noncompliance cost is low enough and father’s preference towards child quality is high enough), we get the following optimal consumption and child support transfer amounts:

\[
c^*_f = \frac{\delta_f}{1+\mu} y_T, \\
c^*_p = \frac{\mu}{1+\mu} y_T, \\
t^* = \frac{1-\delta_f}{1+\mu} (y_f + y_p) - \frac{\mu+\delta_f}{1+\mu} y_m. \]
\((27) \)

If father decides to avoid noncompliance cost and complies with child support order by paying \(t = s \), then mother’s expenditures on child quality are given by \(k^{EC} = (1 - \delta_m) (y_m + s) \), while father’s and his partner’s optimal consumption amounts are found by solving the following maximization problem:

\[
\max_{c_f, c_p} U_f + \mu U_p = \delta_f \log (c_f) + (1 - \delta_f) \log ((1 - \delta_m)(y_m + s)) + \mu \log (c_p),
\]

s.t. \[y_f + y_p = t + c_f + c_p, \]
\((28) \)

I refer to this situation as “Exact compliance” case and it results in the following consump-
tion levels:

\[
\begin{align*}
 c_f^{EC} &= \frac{\delta_f}{1+\mu} (y_f + y_p - s), \\
 c_p^{EC} &= \frac{\mu}{1+\mu} (y_f + y_p - s).
\end{align*}
\]

(29)

In the case of “Over Compliance”, father pays more child support than the court order amount. This happens when \(t^* (\delta_f) > s \), or \(\delta_f < 1 - \frac{(1+\mu)(y_m+s)}{y_f} \equiv \bar{\delta} \). In this case, the level of noncompliance cost \(\vartheta \) is irrelevant to father’s decision problem. When the father pays positive child support which is lower than the court order, we have a “Partial Payments” case. Finally, the father voluntarily pays no child support if \(t^* (\delta_f) \leq 0 \), or \(\delta_f > 1 - (1+\mu) \frac{y_m}{y_f} \equiv \bar{\delta} \). I call this situation as the “No Payments” case. In the latter case father’s and his partner’s optimal consumption levels are given by:

\[
\begin{align*}
 c_f^{NP} &= \frac{\delta_f}{1+\mu} (y_f + y_p), \\
 c_p^{NP} &= \frac{\mu}{1+\mu} (y_f + y_p).
\end{align*}
\]

(30)

When father’s voluntary child support transfer amount is less than the court order, the father has to decide whether he should not comply with the court order and incur noncompliance cost, or whether he should comply with the court order and have suboptimal consumption levels. He can make this decision by comparing his household’s utility function values in both cases. Denote his and his partner’s household’s indirect utility level in the case of “Exact compliance” as \(W^{EC} = \delta_f \log (c_f^{EC}) + (1 - \delta_f) \log (k^{EC}) + \mu \log (c_p^{EC}) \). Moreover, denote father’s household’s indirect utility excluding noncompliance cost term in the case of “No Payments” as \(W^{NP} = \delta_f \log (c_f^{NP}) + (1 - \delta_f) \log ((1 - \delta_m) y_m) + \mu \log (c_p^{NP}) \), and in the case of “Partial Payments” as \(W^{PP} = \delta_f \log (c_f^*) + (1 - \delta_f) \log ((1 - \delta_m) (y_m + t^*)) + \mu \log (c_p^*) \). Then father decides to comply with the court order if noncompliance cost is high enough, i.e. if \(W^{EC} > W^{NP} - \vartheta \) given that \(\delta_f > \bar{\delta} \), or if \(W^{EC} > W^{PP} - \vartheta \) given that \(\bar{\delta} < \delta_f \leq \bar{\delta} \).

Therefore, the solution of household’s utility maximization problem can be separated into four cases, as defined above, depending on the values of father’s preference and noncompliance.
cost parameters:

1) No Payments \(t = 0 \) if \(\delta_f \in (\delta, 1] \) and \(\vartheta \in [0, W^{NP} - W^{EC}) \),

2) Partial Payments \(t = t^* < s \) if \(\delta_f \in (\delta, \delta] \) and \(\vartheta \in [0, W^{PP} - W^{EC}) \),

3) Exact Compliance \(t = s \) if \(\delta_f \in (\delta, 1] \) and \(\vartheta \in [W^{NP} - W^{EC}, \infty) \) (31)

3) Over Compliance \(t = t^* > s \) if \(\delta_f \in [0, \delta] \),

Appendix B. Individual Likelihood and Gradient Specifications

Density function for each observation depends on actual child support payment and court order amounts and can be decomposed into four different parts as described in equation (7). Density function for these four parts, conditional on individual heterogeneity terms, \(\epsilon_i \) and \(u_i \), is the following:

1. When observed \(y_{1it} = 0 \) :

\[f_1(y_{1it} | u_i, \epsilon_i) = Pr(y_{1it}^* \leq 0, y_{2it}^* > 0) = Pr\left(\frac{\nu_{it}}{\sigma_{\nu}} \leq \frac{-\beta' x_{it} - \sigma_x \epsilon_i}{\sigma_{x}}, \omega_{it} > -\gamma' z_{it} - \sigma_u u_i \right) \]

\[= Pr\left(\frac{\nu_{it}}{\sigma_{\nu}} \leq \frac{-\beta' x_{it} - \sigma_x \epsilon_i}{\sigma_{x}}, -\omega_{it} \leq \gamma' z_{it} + \sigma_u u_i \right) \]

\[= \Phi_2 \left(\frac{-\beta' x_{it} - \sigma_x \epsilon_i}{\sigma_{x}}, \gamma' z_{it} + \sigma_u u_i, -\rho \right), \] (32)

since Gaussian distribution is symmetrical. Here \(\Phi_2 \) denotes bivariate standard normal CDF.
2. When $0 < y_{1it} < s_i$:

$$
\begin{align*}
 f_2(y_{it} | u_i, \epsilon_i) &= Pr (0 < y_{1it} < s_i, y_{2it} > 0) f (y_{1it} | 0 < y_{1it} < s_i, y_{2it} > 0) \\
 &= Pr (0 < y_{1it} < s_i, y_{2it} > 0 | y_{1it}) f (y_{1it}) \\
 &= Pr (y_{2it} > 0 | y_{1it}) f (y_{1it}) \\
 &= \Phi \left(\frac{\gamma' z_{it} + \sigma_u u_i + \frac{\delta}{\sigma_v} (y_{it} - \beta' x_{it} - \sigma \epsilon_i)}{(1 - \rho^2)^{1/2}} \right) \frac{1}{\sigma_v} \phi \left(\frac{y_{it} - \beta' x_{it} - \sigma \epsilon_i}{\sigma_v} \right),
\end{align*}
$$

since $\omega_{|u_{it}} = \frac{\mu}{\sigma_{\nu}} \nu_{it} + \xi_{it}$, $\xi_{it} = N (0, 1 - \rho^2)$, where Φ stands for standard normal CDF and ϕ denotes standard normal PDF.

3. When $y_{1it} = s_i$:

$$
\begin{align*}
 f_3(y_{it} | u_i, \epsilon_i) &= Pr (y_{1it}^* = s_i, y_{2it}^* \leq 0) = Pr \left(\frac{\nu_a}{\sigma_v} \leq \frac{s_i - \beta' x_{it} - \sigma \epsilon_i}{\sigma_v}, \omega_{it} \leq -\gamma' z_{it} - \sigma u_i \right) \\
 &= \Phi_2 \left(\frac{s_i - \beta' x_{it} - \sigma \epsilon_i}{\sigma_v}, -\gamma' z_{it} - \sigma u_i, \rho \right)
\end{align*}
$$

4. Finally, when $y_{1it} > s_i$:

$$
\begin{align*}
 f_4(y_{it} | u_i, \epsilon_i) &= Pr (y_{1it}^* > s_i) f (y_{1it}^* > s_i) = f (y_{1it}^*) \\
 &= \frac{1}{\sigma_v} \phi \left(\frac{y_{it} - \beta' x_{it} - \sigma \epsilon_i}{\sigma_v} \right)
\end{align*}
$$

In order to simplify notation, define the following:

$$
\begin{align*}
 \tau_1 &\equiv \sigma_{\epsilon} = \exp \left(\frac{1}{2} \alpha_{\epsilon} \right); \tau_2 &\equiv \sigma_u = \exp \left(\frac{1}{2} \alpha_u \right); \\
 \delta_1 &\equiv \rho = \frac{1 - \exp(\alpha_{\rho})}{1 + \exp(\alpha_{\rho})}; \delta_2 &\equiv \frac{1}{(1 - \rho^2)^{1/2}} = \frac{1 + \exp(\alpha_{\rho})}{2 \exp(\frac{1}{2} \alpha_{\rho})}; \delta_3 &\equiv \frac{1}{\sigma_v} = \exp \left(-\frac{1}{2} \alpha_{\nu} \right); \\
 A_{1it} &\equiv \frac{\beta' x_{it} + \sigma \epsilon_i}{\sigma_v} = \delta_3 (\beta' x_{it} + \tau_1 \epsilon_i); A_{2it} &\equiv \delta_3 (y_{it} - \beta' x_{it} - \tau_1 \epsilon_i); \\
 A_{3it} &\equiv \delta_3 (\beta' x_{it} + \tau_1 \epsilon_i - s_i); B_{it} &\equiv \gamma' z_{it} + \tau_2 u_i.
\end{align*}
$$
Then the expression for the log-likelihood for each observation is:

\[
 l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right) \equiv \log (f (y_{it} | u_m, \epsilon_i)) = I (y_{it} = 0) \times \log \Phi_2 (-A_{1it}, B_{it}, -\delta_1)
\]

\[
 + I (0 < y_{it} < s_i) \times \log \Phi_2 (\delta_2 (B_{it} + \delta_1 A_{2it})) + \log (\delta_3) - \frac{1}{2} \log (2\pi) - \frac{1}{2} A_{2it}^2
\]

\[
 + I (y_{it} = s_i) \times [\log \Phi_2 (-A_{3it}, -B_{it}, \delta_1)]
\]

\[
 + I (y_{it} > s_i) \times [\log (\delta_3) - \frac{1}{2} \log (2\pi) - \frac{1}{2} A_{2it}^2]
\]

(36)

The remaining of this section specifies the expressions for \(\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right) / \partial \hat{\theta} \) for each of the four cases defined in equation [7].

1. For the case of no child support payment, i.e. when \(y_{1it} = 0 \):

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \left[\beta' \alpha'_\epsilon \alpha'_\nu \right]'} = -\delta_3 \frac{\partial l_{1it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \left[\beta' \alpha'_\epsilon \alpha'_\nu \right]'} \left[x_{it} \right]
\]

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \left[\gamma' \alpha'_u \right]'} = \frac{\phi (B_{it}) \Phi (\delta_2 (-A_{1it} + \delta_1 B_{it}))}{\Phi_2 (-A_{1it}, B_{it}, -\delta_1)} \left[z_{it} \right]
\]

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \alpha_\rho} = \frac{1}{2} \delta_2 \phi (-A_{1it}, B_{it}, -\delta_1)
\]

2. When \(0 < y_{1it} < s_i \):

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \left[\beta' \alpha'_\epsilon \right]'} = -\delta_3 \left(\delta_1 \delta_2 \frac{\phi (\delta_2 (B_{it} + \delta_1 A_{2it}))}{\Phi (\delta_2 (B_{it} + \delta_1 A_{2it}))} - A_{2it} \right) \left[x_{it} \right]
\]

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \left[\gamma' \alpha'_u \right]'} = \frac{\delta_2}{\Phi_2 (-A_{1it}, B_{it}, -\delta_1)} \left[z_{it} \right]
\]

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \alpha_\rho} = -\frac{1}{2} \delta_1 \delta_2 \phi (-A_{1it}, B_{it}, -\delta_1 A_{2it}) - A_{2it} - \frac{1}{2} + \frac{1}{2} A_{2it}^2
\]

\[
 \frac{\partial l_{it} \left(\hat{\theta} | u_m, \epsilon_i \right)}{\partial \alpha_\rho} = -\frac{1}{2} \delta_2 \phi (-A_{1it}, B_{it}, -\delta_1 A_{2it}) \left((\delta_1^2 + \delta_2^{-2}) A_{2it} + \delta_1 B_{it} \right)
\]

35
3. When \(y_{1it} = s_i \):

\[
\frac{\partial l_{it}(\tilde{\theta} | u_m, \epsilon_t)}{\partial \left[\beta' \ \alpha' \ \epsilon' \right]'} = -\delta_3 \frac{\phi(A_{3it}) \Phi(\delta_2 (-B_{it} + \delta_1 A_{3it}))}{\Phi_2(-A_{3it}, -B_{it}, \delta_1)} \left[\begin{array}{c} x_{it} \\ \frac{1}{2} \tau_1 \epsilon_i \\ -\frac{1}{2} A_{3it}/\delta_3 \end{array} \right]
\]

\[
\frac{\partial l_{it}(\tilde{\theta} | u_m, \epsilon_t)}{\partial \left[\gamma' \ \alpha'_u \right]'} = -\frac{\phi(B_{it}) \Phi(\delta_2 (-A_{3it} + \delta_1 B_{it}))}{\Phi_2(-A_{3it}, -B_{it}, \delta_1)} \left[\begin{array}{c} z_{it} \\ \frac{1}{2} \tau_2 u_i \end{array} \right]
\]

\[
\frac{\partial l_{it}(\tilde{\theta} | u_m, \epsilon_t)}{\partial \alpha_{\rho}} = -\frac{1}{2} \delta_2 - 2 \frac{\phi_2(-A_{3it}, -B_{it}, \delta_1)}{\Phi_2(-A_{3it}, -B_{it}, \delta_1)}
\]

4. Finally, when \(y_{1it} > s_i \):

\[
\frac{\partial l_{it}(\tilde{\theta} | u_m, \epsilon_t)}{\partial \left[\beta' \ \alpha' \right]'} = \delta_3 A_{2it} \left[\begin{array}{c} x_{it} \\ \frac{1}{2} \tau_1 \epsilon_i \end{array} \right]
\]

\[
\frac{\partial l_{it}(\tilde{\theta} | u_m, \epsilon_t)}{\partial \left[\gamma' \ \alpha'_u \ \alpha'_\rho \right]'} = 0
\]

\[
\frac{\partial l_{it}(\tilde{\theta} | u_m, \epsilon_t)}{\partial \alpha_{\nu}} = -\frac{1}{2} + 2 \frac{A_{2it}^2}{2}
\]
Appendix C. Hessian of the concentrated log-likelihood in Fixed Effects Estimation

Expression for Hessian of the concentrated log-likelihood is given by

\[
\frac{\partial^2 l^C(\theta)}{\partial \theta \partial \theta'} = \sum_i \left[d_{\theta \theta i}(\theta, \hat{\eta}_i(\theta)) + 2 d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta)) \frac{\partial \hat{\eta}_i(\theta)}{\partial \theta'} + \frac{\partial \hat{\eta}_i(\theta)}{\partial \theta} \frac{\partial^2 \hat{\eta}_i(\theta)}{\partial \theta \partial \theta'} + d_{\eta \eta i}(\theta, \hat{\eta}_i(\theta)) \frac{\partial^2 \hat{\eta}_i(\theta)}{\partial \eta \partial \eta'} \right] \tag{37}
\]

This can be simplified by noting, that \(d_{\eta \eta i}(\theta, \hat{\eta}_i(\theta)) \equiv 0\), which we can differentiate w.r.t. \(\theta\):

\[
d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta))' + d_{\eta \eta i}(\theta, \hat{\eta}_i(\theta)) \frac{\partial \hat{\eta}_i(\theta)}{\partial \theta'} \equiv 0, \quad \tag{38}
\]

or

\[
\frac{\partial \hat{\eta}_i(\theta)}{\partial \theta'} \equiv - [d_{\eta \eta i}(\theta, \hat{\eta}_i(\theta))]^{-1} d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta))' \tag{39}
\]

Then after substituting for \(\frac{\partial \hat{\eta}_i(\theta)}{\partial \theta'}\) and using the fact that \(d_{\eta i}(\theta, \hat{\eta}_i(\theta)) \equiv 0\), the final expression for Hessian becomes the following:

\[
\frac{\partial^2 l^C(\theta)}{\partial \theta \partial \theta'} = \sum_i \left[d_{\theta \theta i}(\theta, \hat{\eta}_i(\theta)) - d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta)) \frac{d_{\eta \eta i}(\theta, \hat{\eta}_i(\theta))^{-1}}{} d_{\theta \eta i}(\theta, \hat{\eta}_i(\theta))' \right], \tag{40}
\]

where \(d_{\theta \theta i}(\theta, \eta_i) \equiv \sum_t \frac{\partial^2 l_{it}(\theta, \eta_i)}{\partial \theta \partial \theta'}\), \(d_{\theta \eta i}(\theta, \eta_i) \equiv \sum_t \frac{\partial^2 l_{it}(\theta, \eta_i)}{\partial \theta \partial \eta_i}\) and \(d_{\eta \eta i}(\theta, \eta_i) \equiv \sum_t \frac{\partial^2 l_{it}(\theta, \eta_i)}{\partial \eta_i \partial \eta_i}\) are estimated by numerically differentiating score functions.