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Abstract

We consider the generalization of the classical Shapley and Scarf housing market model

of trading indivisible objects (houses) (Shapley and Scarf, 1974) to so-called multiple-type

housing markets (Moulin, 1995). When preferences are separable, the prominent solution

for these markets is the coordinatewise top-trading-cycles (cTTC) mechanism.

We first show that for lexicographic preferences, a mechanism is unanimous (or onto),

individually rational, strategy-proof, and non-bossy if and only if it is the cTTC mecha-

nism (Theorem 1). Second, using Theorem 1, we obtain a corresponding characterization

for separable preferences (Theorem 2). We obtain corresponding results when replacing

[strategy-proofness and non-bossiness] with effective group (or pairwise) strategy-proofness

(Corollaries 1 and 2). Finally, we show that for strict preferences, there is no mechanism

satisfying unanimity, individual rationality, and strategy-proofness (Theorem 3). We ob-

tain three further impossibility results for strict preferences based on weakening unanimity

to ontoness (Corollary 3) and on extending the cTTC solution (Corollary 4, Theorem 4).

Our characterizations of the cTTC mechanism constitute the first characterizations

of an extension of the prominent top-trading-cycles (TTC) mechanism to multiple-type

housing markets.
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1 Introduction

In many applied matching problems, indivisible goods that are in unit demand have to be

assigned without monetary transfers. One of the most prominent such problems is modeled by

classical Shapley-Scarf housing markets (Shapley and Scarf, 1974). Shapley and Scarf (1974)

consider an exchange economy in which each agent owns an indivisible object (say, a house);

each agent has preferences over houses and wishes to consume exactly one house. The objective

of the market designer then is to reallocate houses among agents. When preferences are strict,

Shapley and Scarf (1974) show that the strict core (defined by a weak blocking notion) has

remarkable features: it is non-empty,1 and can be easily calculated by the so-called top-trading-

cycles (TTC) algorithm (due to David Gale). Moreover, the TTC mechanism that assigns the

unique strict core allocation satisfies important incentive properties, strategy-proofness (Roth,

1982) as well as the stronger property of group strategy-proofness (Bird, 1984). Furthermore, Ma

(1994) and Svensson (1999) show that the TTC mechanism is the unique mechanism satisfying

Pareto efficiency, individual rationality, and strategy-proofness.

However, more general problems of exchanging indivisible objects that are in multi-unit

demand are known to be very difficult. In this paper, we consider an extension of the classical

Shapley-Scarf housing markets by allowing multi-unit demand: multiple-type housing markets,

to use the language of Moulin (1995).2 In this model, objects are of different types (say, houses,

cars, etc.) and agents initially own and exactly wish to consume one object of each type.

A familiar example for most readers would be the situation of students’ enrollment at many

universities where courses are taught in small groups and in multiple sessions (Klaus, 2008).

Furthermore, for term paper presentations during a course, students may want to exchange

their assigned topics and dates (Mackin and Xia, 2016); hospitals may want to improve their

surgery schedule for surgeons by swapping surgery staff, operating rooms, and dates (Huh et al.,

2013); and in cloud computing (Ghodsi et al., 2011, 2012) and 5G network slicing (Peng et al.,

2015; Bag et al., 2019; Han et al., 2019), there may be several types of resources that agents

require, including CPU, memory, and storage.

This model is firstly studied by Konishi et al. (2001). Their results are mainly negative:

they show that even if we further restrict preferences to be strict and additively separable, the

strict core may still be empty. Moreover, there exists no mechanism that is Pareto efficient,

individually rational, and strategy-proof.

Despite their negative results, for (strictly) separable preferences, Wako (2005) suggests an

alternative solution concept to the strict core by first decomposing a multiple-type housing mar-

ket into coordinatewise submarkets and second, determining the strict core in each submarket.

1Roth and Postlewaite (1977) show that the strict core is single-valued.
2There are many other resource allocation models with multi-unit demand, such as Pápai (2001, 2007) and

Manjunath and Westkamp (2021).

2



Wako (2005) calls this unique outcome the commoditywise competitive allocation and shows

that it is implementable in (self-enforcing) coalition-proof Nash equilibria but not in strong

Nash equilibria.3

Based on Wako’s result, we investigate the mechanism that always assigns the commoditywise

competitive allocation; since this allocation can be obtained by using the TTC algorithm for

each object type, we refer to it as the coordinatewise TTC (cTTC) mechanism. Although the

cTTC mechanism is not Pareto efficient, it does have many desirable properties: it is individually

rational, strategy-proof, and second-best incentive compatible, i.e., it is not Pareto dominated

by any other strategy-proof mechanism (Klaus, 2008). In view of these positive results, one may

wonder whether the cTTC mechanism can be characterized by weakening Pareto efficiency and

strengthening strategy-proofness.

For Shapley-Scarf housing markets with strict preferences, a characterization along these

lines is provided by Takamiya (2001): he shows that the TTC mechanism is the only mechanism

satisfying unanimity, individual rationality, and group strategy-proofness.4 Based on Takamiya’s

result, one could now conjecture that this characterization of the TTC mechanism for Shapley-

Scarf housing markets can be carried over to the cTTC mechanism for multiple-type housing

markets. That conjecture is almost true; however, we need to weaken group strategy-proofness

to strategy-proofness and non-bossiness.5 In other words, inspired by Takamiya’s result for

Shapley-Scarf housing markets, we show that, remarkably, the cTTC mechanism is the only

mechanism satisfying unanimity (or ontoness), individual rationality, strategy-proofness, and

non-bossiness (see Theorems 1 and 2 for lexicographic and separable preferences, respectively).

We obtain corresponding results when replacing [strategy-proofness and non-bossiness] with

effective group (or pairwise) strategy-proofness (Corollaries 1 and 2).

Our characterizations of the cTTC mechanism constitute the first characterizations of an ex-

tension of the prominent top-trading-cycles (TTC) mechanism to multiple-type housing markets.

Furthermore, our results suggest that when preferences are separable, the cTTC mechanism is

outstanding; first, because some efficiency in the form of unanimity is preserved (even if full

Pareto efficiency cannot be reached), and second, because of its incentive robustness in the form

of strategy-proofness, non-bossiness, and effective group (pairwise) strategy-proofness (even if

full group strategy-proofness cannot be reached). Moreover, we also provide several impossi-

bility results (Theorems 3 and 4, Corollaries 3 and 4) for strict (but otherwise unrestricted)

preferences:

3However, (1) the commoditywise competitive allocation may be Pareto inefficient; and (2) the mechanism

that always assigns this allocation is not group strategy-proof (see Wako, 2005, Section 6, for details).
4In fact, Takamiya’s characterization is based on ontoness, a weakening of unanimity. However, in the presence

of group strategy-proofness, ontoness coincides with unanimity.
5When preferences are strict but otherwise unrestricted, the combination of strategy-proofness and non-

bossiness is equivalent to group strategy-proofness. Example 1 shows that this is not true for separable prefer-

ences.
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� there is no mechanism satisfying unanimity, individual rationality, and strategy-proofness

(Theorem 3);

� there is no mechanism satisfying ontoness, individual rationality, strategy-proofness, and

non-bossiness (Corollary 3);

� there is no individually rational and strategy-proof mechanism that extends the cTTC

mechanism from lexicographic (separable) preferences to strict preferences (Theorem 4);

and

� there is no strategy-proof and non-bossy mechanism that extends the cTTC mechanism

from lexicographic (separable) preferences to strict preferences (Corollary 4).

The rest of the paper is organized as follows. In the following section, Section 2, we introduce

multiple-type housing markets, mechanisms and their properties, and the cTTC mechanism. We

state our results in Section 3. In Subsection 3.1, we first show that for lexicographic preferences,

a mechanism is unanimous (or onto), individually rational, strategy-proof, and non-bossy if

and only if it is the cTTC mechanism (Theorem 1). In Subsection 3.2, using Theorem 1, we

obtain a corresponding characterization for separable preferences (Theorem 2). We would like

to emphasize that the proof strategy to use lexicographic preferences as a “stepping stone” to

obtain a corresponding result for separable preferences is, to the best of our knowledge, new. In

Subsections 3.1 and 3.2 we obtain corresponding results when replacing [strategy-proofness and

non-bossiness] with effective group (or pairwise) strategy-proofness (Corollaries 1 and 2). In

Subsection 3.3 and Appendix E, we finally show several impossibility results (Theorems 3 and

4, Corollaries 3 and 4). Section 4 concludes with a discussion of our results and how they relate

to the literature.

2 The model

Multiple-type housing markets

We consider a barter economy without monetary transfers formed by n agents and n × m

indivisible objects. Let N = {1, . . . , n} be a finite set of agents. A nonempty subset of agents

S ⊆ N is a coalition. We assume that there exist m ≥ 1 (distinct) types of indivisible objects and

n (distinct) indivisible objects of each type. We denote the set of types by T = {1, ...,m}. Note
that for m = 1 our model equals the classical Shapley-Scarf housing market model (Shapley and

Scarf, 1974).
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Each agent i ∈ N is endowed with exactly one object of each type t ∈ T , denoted by

oti. Hence, each agent i’s endowment is a list oi = (o1i , . . . , o
m
i ). The set of type-t objects is

Ot = {ot1, ..., otn}, and the set of all objects is O = {o11, o21, . . . , o1n, o2n, . . . , omn }. In particular,

|O| = n×m.

For each i ∈ N , an allotment xi assigns one object of each type to agent i, i.e., xi is a list

xi = (x1
i , . . . , x

m
i ) ∈ Πt∈TO

t, where xt
i ∈ Ot is agent i’s type-t allotment. We assume that each

agent i has complete, antisymmetric, and transitive preferences Ri over all possible allotments,

i.e., Ri is a linear order over Πt∈TO
t.6 For two allotments xi and yi, xi is weakly preferred to

yi if xi Ri yi, and xi is strictly preferred to yi if [xi Ri yi and not yi Ri xi], denoted by xi Pi yi.

Finally, since preferences over allotments are strict, agent i is indifferent between xi and yi only

if xi = yi. We denote preferences as ordered lists, e.g., Ri : xi, yi, zi instead of xi Pi yi Pi zi.

The set of all preferences is denoted by R, which we will also refer to as the strict preference

domain.

A preference profile specifies preferences for all agents and is denoted by a list R =

(R1, . . . , Rn) ∈ RN . We use the standard notation R−i = (R1, . . . , Ri−1, Ri+1, . . . , Rn) to de-

note the list of all agents’ preferences, except for agent i’s preferences. Furthermore, for each

coalition S we define RS = (Ri)i∈S and R−S = (Ri)i∈N\S to be the lists of preferences of the

members of coalitions S and N\S, respectively.

In addition to the domain of strict preferences, we consider two preference subdomains based

on agents’ “marginal preferences”: assume that for each i ∈ N and for each type t ∈ T , agent i

has complete, antisymmetric, and transitive preferences Rt
i over the set of type-t objects Ot.

We refer to Rt
i as agent i’s type-t marginal preferences, and denote by Rt the set of all type-t

marginal preferences. Then, we can define the following two preference domains.

(Strictly) Separable preferences. Agent i’s preferences Ri ∈ R are separable if for each

t ∈ T there exist type-t marginal preferences Rt
i ∈ Rt such that for any two allotments xi and yi,

if for all t ∈ T, xt
i R

t
i y

t
i , then xi Ri yi.

Rs denotes the domain of separable preferences.

Before defining our next preference domain, we introduce some notation. We use a bijective

function πi : T → T to order types according to agent i’s “(subjective) importance,” with πi(1)

being the most important and πi(m) being the least important object type. We denote πi as an

ordered list of types, e.g., by πi = (2, 3, 1), we mean that πi(1) = 2, πi(2) = 3, and πi(3) = 1.

For each agent i ∈ N and each allotment xi = (x1
i , . . . , x

m
i ), x

πi
i = (x

πi(1)
i , . . . , x

πi(m)
i ) denotes the

allotment after rearranging it with respect to the object-type importance order πi.

6Preferences Ri are complete if for any two allotments xi, yi, xi Ri yi or yi Ri xi; they are antisymmetric if

xiRi yi and yiRi xi imply xi = yi; and they are transitive if for any three allotments xi, yi, zi, xiRi yi and yiRi zi

imply xi Ri zi.
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(Separably) Lexicographic preferences. Agent i’s preferences Ri ∈ R are (separably) lex-

icographical if they are separable with type-t marginal preferences (Rt
i)t∈T and there exists an

object-type importance order πi : T → T such that for any two allotments xi and yi,

if x
πi(1)
i P

πi(1)
i y

πi(1)
i or

if there exists a positive integer k ≤ m− 1 such that

x
πi(1)
i = y

πi(1)
i , . . . , x

πi(k)
i = y

πi(k)
i , and x

πi(k+1)
i P

πi(k+1)
i y

πi(k+1)
i ,

then xi Pi yi.

Rl denotes the domain of lexicographic preferences.

Note that Ri ∈ Rl can be restated as a m+ 1-tuple Ri = (R1
i , . . . , R

m
i , πi) = ((Rt

i)t∈T , πi), or

a strict ordering of all objects,7 i.e., Ri lists first all π(1) objects (according to R
π(1)
i ), then all

π(2) objects (according to R
π(2)
i ), and so on. We provide a simple illustration in Example 1.

Note that if m > 1,

Rl ⊊ Rs ⊊ R.

An allocation x partitions the set of all objectsO into agents’ allotments, i.e., x = {x1, . . . , xn}
is such that for each t ∈ T , ∪i∈Nx

t
i = Ot and for each pair i ̸= j, xt

i ̸= xt
j. For simplicity,

sometimes we will restate an allocation as a list x = (x1, . . . , xn). The set of all allocations is

denoted by X, and the endowment allocation is denoted by e = (o1, . . . , on).

We assume that when facing an allocation x, there are no consumption externalities and

each agent i ∈ N only cares about his own allotment xi. Hence, each agent i’s preferences over

allocations X are essentially equivalent to his preferences over allotments Πt∈TO
t. With some

abuse of notation, we use notation Ri to denote an agent i’s preferences over allotments as well

as his preferences over allocations, i.e., for each agent i ∈ N and for any two allocations x, y ∈ X,

x Ri y if and only if xi Ri yi.
8

A (multiple-type housing) market is a triple (N, e,R); as the set of agents N and the endow-

ment allocation e remain fixed throughout, we will simply denote market (N, e,R) by R. Thus,

the domain of strict preference profiles RN also denotes the set of all markets.

Mechanisms and properties

Note that the following definitions and results for the domain of strict preference profiles RN can

be formulated for the domain of separable preference profiles RN
s or the domain of lexicographic

preference profiles RN
l .

7See Feng and Klaus (2022, Remark 1) for details.
8Note that when extending strict preferences over allotments to preferences over allocations without consump-

tion externalities, strictness is lost because an agent is indifferent between any two allocations where he gets the

same allotment.
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A mechanism (on RN) is a function f : RN → X that assigns to each market R ∈ RN an

allocation f(R) ∈ X, and

� for each i ∈ N , fi(R) is agent i’s allotment ;

� for each i ∈ N and each t ∈ T , f t
i (R) is agent i’s type-t allotment

under mechanism f at R.

We next introduce and discuss some well-known properties for allocations and mechanisms.

Let R ∈ RN .

First we consider a voluntary participation condition for an allocation x to be implementable

without causing agents any harm: no agent will be worse off than at his endowment.

Definition 1 (Individual rationality).

An allocation x ∈ X is individually rational if for each agent i ∈ N , xi Ri oi. A mechanism on

RN is individually rational if for each market, it assigns an individually rational allocation.

Next, we consider two well-known efficiency criteria.

Definition 2 (Pareto efficiency).

An allocation y ∈ X Pareto dominates allocation x ∈ X if for each agent i ∈ N , yi Ri xi, and

for at least one agent j ∈ N , yj Pj xj. An allocation x ∈ X is Pareto efficient if there is no

allocation y ∈ X that Pareto dominates it. A mechanism on RN is Pareto efficient if for each

market, it assigns a Pareto efficient allocation.

Definition 3 (Unanimity).

An allocation x ∈ X is unanimously best if for each agent i ∈ N and each allocation y ∈ X, we

have x Ri y.
9 A mechanism on RN is unanimous if for each market, it assigns the unanimously

best allocation whenever it exists.

If a unanimously best allocation exists for R ∈ RN , then that allocation is the only Pareto

efficient allocation for R. Hence, Pareto efficiency implies unanimity.

Next, we introduce a weaker condition than unanimity that guarantees that no allocation is

a priori excluded.

Definition 4 (Ontoness).

A mechanism on RN is onto if each allocation is assigned to some markets. In other words, a

mechanism is onto if it is an onto function.

It is immediate that unanimity implies ontoness (see also Lemma 2).

The next three properties are incentive properties that model that no agent / coalition can

benefit from misrepresenting his / their preferences.

9Since all preferences are strict, the set of unanimously best allocations is empty or single-valued.
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Definition 5 (Strategy-proofness).

A mechanism f on RN is strategy-proof if for each R ∈ RN , each agent i ∈ N , and each

preference relation R′
i ∈ R, fi(Ri, R−i)Ri fi(R

′
i, R−i), i.e., agent i cannot manipulate mechanism

f at R via R′
i.

Definition 6 (Group strategy-proofness).

A mechanism f on RN is group strategy-proof if for each R ∈ RN , there is no coalition S ⊆ N

and no preference list R′
S = (R′

i)i∈S ∈ RS such that for each i ∈ S, fi(R
′
S, R−S)Ri fi(R), and for

some j ∈ S, fj(R
′
S, R−S)Pj fj(R), i.e., coalition S cannot manipulate mechanism f at R via R′

S.

Group-strategy-proofness implies strategy-proofness. Next, we introduce a strategic robust-

ness property that is stronger than strategy-proofness and weaker than group strategy-proofness.

Serizawa (2006) introduces and analyzes effective pairwise strategy-proofness for various eco-

nomic models: a mechanism that is effectively pairwise strategy-proof excludes unilateral as

well as “self-enforcing” pairwise manipulations. Recently, Biró et al. (2022a) extend Serizawa’s

self-enforcing notion of pairwise strategy-proofness to robustness against coalitional deviations

of arbitrary sizes (assuming “minimality of the self-enforcing manipulations”).10

Definition 7 (Effective group (pairwise) strategy-proofness).

A coalition of agents S ⊆ N can manipulate mechanism f in a self-enforcing manner if there

exist some R ∈ RN and some R′
S ∈ RS such that

� coalition S can manipulate mechanism f at R via R′
S:

for each i ∈ S, fi(R
′
S, R−S)Ri fi(R) and for some j ∈ S, fj(R

′
S, R−S) Pj fj(R) and

� coalition S is self-enforcing : for each i ∈ S, fi(R
′
S, R−S)Ri fi(Ri, R

′
S\{i}, R−S).

If a coalition of agents S can manipulate mechanism f at R via R′
S, then S is a minimal

manipulating coalition at R via R′
S if there is no S ′ ⊊ S such that S ′ can manipulate mechanism

f atR viaR′
S′ . A mechanism onRN is effectively group strategy-proof if no minimal manipulating

coalition of agents can manipulate f in a self-enforcing manner; it is effectively pairwise strategy-

proof if it is strategy-proof and no pair of agents can manipulate f in a self-enforcing manner.

Finally, we consider a well-known property for mechanisms that restricts each agent’s influ-

ence: no agent can change other agents’ allotments without changing his own allotment.

Definition 8 (Non-bossiness).

A mechanism f on RN is non-bossy if for each R ∈ RN , each agent i ∈ N , and each R′
i ∈ R,

fi(Ri, R−i) = fi(R
′
i, R−i) implies f(Ri, R−i) = f(R′

i, R−i).

10Biró et al. (2022a) refer to their property as self-enforcing group strategy-proofness.
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Group-strategy-proofness implies non-bossiness. Alva (2017, Proposition 1) shows that

strategy-proofness and non-bossiness are equivalent to effective pairwise strategy-proofness, and

Biró et al. (2022a, Proposition 11) show that strategy-proofness and non-bossiness are equiva-

lent to effective group strategy-proofness. Thus, these studies provide an intuition of why the

invariance property non-bossiness can be considered to be an incentive property as well. Both

results apply to our model as well.

Lemma 1 (Alva, 2017; Biró et al., 2022a).

A mechanism on RN is strategy-proof and non-bossy if and only if it is effectively group (or

pairwise) strategy-proof.

We already mentioned that unanimity implies ontoness. We next show that, in the presence

of strategy-proofness and non-bossiness, ontoness implies unanimity.

Lemma 2.

(a) If a mechanism on RN is unanimous, then it is onto.

(b) If a mechanism on RN is strategy-proof, non-bossy, and onto, then it is unanimous.

Proof. (a) Let f on RN be unanimous. Fix any allocation x ∈ X. Let R ∈ RN be a preference

profile such that x is unanimously best under R. Then, by unanimity of f , f(R) = x. Hence,

f is an onto function.

(b) Let f onRN be strategy-proof, non-bossy, and onto. Let x ∈ X and R ∈ RN be a preference

profile such that x is unanimously best under R. By ontoness of f , there exists a preference

profile R′ ∈ R such that f(R′) = x. Let i ∈ N and y = f(Ri, R
′
−i). By strategy-proofness of

f , we have yi Ri xi. Since xi is agent i’s most preferred allotment, we have yi = xi. Then, by

non-bossiness of f , we have f(Ri, R
′
−i) = y = x = f(R′). By applying this argument repeatedly

for all agents in N\{i}, we find that f(R) = x = f(R′). So, f is unanimous.

Note that the above definitions and results are valid for preference profile domains RN , RN
s ,

and RN
l .

We next focus on the domain of separable preference profilesRN
s (the domain of lexicographic

preference profiles RN
l , respectively) and extend Gale’s famous top-trading-cycles (TTC) algo-

rithm to multiple-type housing markets.

Definition 9 (The type-t top-trading-cycles (TTC) algorithm).

Consider a market (N, e,R) such that R ∈ RN
s . For each type t ∈ T , let (N, et, Rt) =

(N, (ot1, . . . , o
t
n), (R

t
1, . . . , R

t
n)) be its associated type-t submarket.

For each type t, we define the top-trading-cycles (TTC) allocation for the type-t submarket

as follows.
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Input. A type-t submarket (N, et, Rt).

Step 1. Let N1 := N and Ot
1 := Ot. We construct a directed graph with the set of nodes

N1 ∪ Ot
1. For each agent i ∈ N1, there is an edge from the agent to his most preferred type-t

object in Ot
1 according to Rt

i. For each edge (i, o) we say that agent i points to type-t object o.

For each type-t object o ∈ Ot
1, there is an edge from the object to its owner.

A trading cycle is a directed cycle in the graph. Given the finite number of nodes, at least

one trading cycle exists. We assign to each agent in a trading cycle the type-t object he points

to and remove all trading cycle agents and type-t objects. If there are some agents (and hence

objects) left, we continue with the next step. Otherwise we stop.

Step k. Let Nk be the set of agents that remain after Step k − 1 and Ot
k be the set of type-t

objects that remain after Step k−1. We construct a directed graph with the set of nodes Nk∪Ot
k.

For each agent i ∈ Nk, there is an edge from the agent to his most preferred type-t object in Ot
k

according to Rt
i. For each type-t object o ∈ Ot

k, there is an edge from the object to its owner. At

least one trading cycle exists and we assign to each agent in a trading cycle the type-t object he

points to and remove all trading cycle agents and objects. If there are some agents (and hence

objects) left, we continue with the next step. Otherwise we stop.

Output. The type-t TTC algorithm terminates when each agent in N is assigned an object in

Ot, which takes at most n steps. We denote the object in Ot that agent i ∈ N obtains in the

type-t TTC algorithm by TTCt
i (R

t) and the final type-t allocation by TTCt(Rt).

Definition 10 (cTTC allocations and the cTTC mechanism).

The coordinatewise top-trading-cycles (cTTC) allocation, cTTC(R), is the collection of all type-t

TTC allocations, i.e., for each R ∈ RN
s ,

cTTC(R) =
( (

TTC1
1(R

1), . . . , TTCm
1 (Rm)

)
, . . . ,

(
TTC1

n(R
1), . . . , TTCm

n (Rm)
) )

.

The cTTC mechanism (introduced by Wako, 2005) assigns to each market R ∈ RN
s its cTTC

allocation.

Shapley-Scarf housing market results

As mentioned before, for m = 1 our model equals the classical Shapley-Scarf housing market

model (Shapley and Scarf, 1974) and the cTTC mechanism reduces to the standard TTC mech-

anism. The Shapley-Scarf housing market (with strict preferences) results that are pertinent for

our analysis of multiple-type housing markets are the following.

Result 1 (Bird, 1984).

Let m = 1. The TTC mechanism on RN is group strategy-proof.

Note that group strategy-proofness implies strategy-proofness and non-bossiness. Thus, Re-

sult 1 also implies that the TTC mechanism is non-bossy (Miyagawa, 2002, explicitly shows

10



this). Also note that when preferences are strict and unrestricted, the combination of strategy-

proofness and non-bossiness coincides with group strategy-proofness. Recently, Alva (2017)

identifies preference domain properties such that this equivalence holds.

Result 2 (Pápai, 2000; Takamiya, 2001; Alva, 2017).

Let m = 1. A mechanism on RN is strategy-proof and non-bossy if and only if it is group

strategy-proof.

Result 3 (Ma, 1994; Svensson, 1999).

Let m = 1. A mechanism on RN is Pareto efficient, individually rational, and strategy-proof if

and only if it is the TTC mechanism.

Result 4 (Takamiya, 2001).

Let m = 1. A mechanism on RN is onto, individually rational, strategy-proof, and non-bossy

if and only if it is the TTC mechanism.

Extension of existing Shapley-Scarf housing market results to

multiple-type housing markets

The results in the previous subsection imply that for Shapley-Scarf housing markets, the TTC

mechanism on RN satisfies

� Pareto efficiency and hence unanimity and ontoness;

� individual rationality ; and

� group strategy-proofness and hence strategy-proofness and non-bossiness.

The cTTC mechanism inherits most of these properties, except for Pareto efficiency and

group strategy-proofness. Hence, TTC Results 1, 2, and 3 do not extend to the cTTC mechanism

when more than one object type is allocated.

Proposition 1. The cTTC mechanism on RN
s (RN

l , respectively) satisfies unanimity, ontoness,

individual rationality, strategy-proofness, non-bossiness, and effective group (pairwise) strategy-

proofness. The cTTC mechanism on RN
s (RN

l , respectively) satisfies neither Pareto efficiency

nor group strategy-proofness.

Proof. It is straightforward to check that the cTTC mechanism on RN
s is individually rational

and unanimous (and hence onto).

We next show that the cTTC mechanism on RN
s inherits strategy-proofness from the TTC

mechanism. Let R ∈ RN
s , i ∈ N , and R̂i ∈ Rs with marginal preferences (R̂1

i , . . . , R̂
m
i ). By

the definition and strategy-proofness of the TTC mechanism, for each t ∈ T , cTTCt
i (R) =

11



TTCt
i (R

t) Rt
i TTCt

i (R̂
t
i, R

t
−i) = cTTCt

i (R̂i, R−i). Then, by the separability of preferences, we

have cTTCi(R)Ri cTTCi(R̂i, R−i) and the cTTC mechanism is strategy-proof.

Finally, to show that the cTTC mechanism on RN
s is non-bossy, let R ∈ RN

s , i ∈ N , and R̂i ∈
Rs, with marginal preferences (R̂1

i , . . . , R̂
m
i ), be such that cTTCi(R) = cTTCi(R̂i, R−i). Thus,

for each t ∈ T , cTTCt
i (R) = cTTCt

i (R̂i, R−i). Moreover, by definition of the cTTC mechanism,

we have for each t ∈ T , cTTCt
i (R) = TTCi(R

t) and cTTCt
i (R̂i, R−i) = TTCi(R̂

t
i, R

t
−i). Thus,

for each t ∈ T , TTCi(R
t) = TTCi(R̂

t
i, R

t
−i), and since the TTC mechanism is non-bossy, we

have that for each t ∈ T , TTC(Rt) = TTC(R̂t
i, R

t
−i). Then, for each t ∈ T , cTTCt(R) =

cTTCt(R̂i, R−i). Thus, cTTC(R) = cTTC(R̂i, R−i) and the cTTC mechanism is non-bossy.

Since the cTTC mechanism on RN
s is strategy-proof and non-bossy, by Lemma 1, it is also

effectively group (pairwise) strategy-proof.

Example 1 below shows that the cTTC mechanism on RN
s is neither Pareto efficient nor

group strategy-proof.

Example 1 (cTTC is neither Pareto efficient nor group strategy-proof ).

Consider the market with N = {1, 2}, T = {H(ouse), C(ar)}, O = {H1, H2, C1, C2}, and where

each agent i’s endowment is (Hi, Ci). The preference profile R ∈ RN
l is as follows:11

R1 : H2,H1,C1, C2,

R2 : C1,C2,H2, H1.

Thus, agent 1, who primarily cares for houses, would like to trade houses but not cars and

agent 2, who primarily cares about cars, would like to trade cars but not houses. One easily

verifies that cTTC(R) =
(
(H1, C1), (H2, C2)

)
, the no-trade allocation. However, note that since

preferences are lexicographic, both agents would be strictly better off if they traded cars and

houses. Thus, allocation
(
(H2, C2), (H1, C1)

)
Pareto dominates cTTC(R). Hence, cTTC is not

Pareto efficient. Furthermore, assume that both agents (mis)report their preferences as follows:

R′
1 : H2,H1, C2,C1,

R′
2 : C1,C2, H1,H2.

Then, cTTC(R′) =
(
(H2, C2), (H1, C1)

)
, making both agents better off compared to cTTC(R).

Hence, cTTC is not group strategy-proof. Finally, note that

cTTC1(R1, R
′
2) = (H2, C1) P1 (H2, C2) = cTTC1(R

′)

and

cTTC2(R
′
1, R2) = (H2, C1) P2 (H1, C1) = cTTC2(R

′),

and hence R′ is not a manipulation in a self-enforcing manner; the cTTC mechanism does not

violate effective group (pairwise) strategy-proofness. ⋄
11In all examples we indicate endowments in boldface.
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While Example 1 shows that cTTC mechanism is not Pareto efficient, Klaus (2008) shows

that it is second-best incentive compatible, i.e., there exists no other strategy-proof mechanism

that Pareto dominates the cTTC mechanism. At the end of her paper, Klaus (2008) presents a

mechanism for classical housing markets that is different from the TTC mechanism and satisfies

individual rationality, second-best incentive compatibility, and strategy-proofness. This mecha-

nism can be extended to multiple-type housing markets by applying it coordinatewise; thus, the

cTTC mechanism is not the unique mechanism that satisfies these properties.

Example 1 also shows that the cTTC mechanism does not satisfy the three properties that

are used in Result 3. Is there another mechanism that does satisfy the three properties? The

following result gives an answer in the negative: there is no mechanism that satisfies Pareto

efficiency, individual rationality, and strategy-proofness, neither on the domain of separable

preference profiles nor on the domain of lexicographic preference profiles.

Result 5 (Impossible trinity).

(a) Let m > 1. There is no mechanism on RN
s that is Pareto efficient, individually rational,

and strategy-proof (Konishi et al., 2001, Proposition 4.1).

(b) Let m > 1. There is no mechanism on RN
l that is Pareto efficient, individually rational,

and strategy-proof (Sikdar et al., 2017, Theorem 2).

Result 5 implies that there is no other mechanism that does better than the cTTC mechanism

by satisfying the three properties on either the domain of separable preference profiles or the

domain of lexicographic preference profiles. However, the cTTC mechanism on RN
s (RN

l , respec-

tively) does satisfy all the properties used in Result 4. In the next section we answer the question

if Takamiya’s characterization of the TTC mechanism for Shapley-Scarf housing markets can be

extended to characterize the cTTC mechanism for multiple-type housing markets.

Finally, Proposition 1 also demonstrates that the equivalence of strategy-proofness and non-

bossiness with group strategy-proofness (Result 2) does not extend to multiple-type housing mar-

kets with separable or lexicographic preferences (because strategy-proofness and non-bossiness

do not imply group strategy-proofness).

3 Characterizing the cTTC mechanism

From now on, we focus on the multiple-type extension of the Shapley-Scarf housing market model

as introduced by Moulin (1995) with more than 1 agent and more than 1 type, i.e., |N | = n > 1

and |T | = m > 1.12

12One agent multiple-type housing market problems are rather trivial since no trade occurs and for just one

object type, we are back to the Shapley-Scarf housing market model.
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3.1 Characterizing the cTTC mechanism for lexicographic prefer-

ences

We first show that Takamiya’s result (Takamiya, 2001, Corollary 4.16) can indeed be extended

to characterize the cTTC mechanism for lexicographic preferences.

Theorem 1. A mechanism on RN
l is

� unanimous (or onto),

� individually rational,

� strategy-proof, and

� non-bossy

if and only if it is the cTTC mechanism.

From Proposition 1 it follows that the cTTC mechanism satisfies unanimity (or ontoness),

individual rationality, strategy-proofness, and non-bossiness. Next, we explain the uniqueness

part of the proof; the full proof that there is no other mechanism that satisfies the above

properties is relegated to Appendices A and B.

First, we establish several auxiliary results for a mechanism f satisfying the properties of

Theorem 1 (Appendix A): invariance of f under (Maskin) monotonic transformations (Lemma 3)

and marginal individual rationality (Lemma 4). Next, we assume that a mechanism f that is not

equal to the cTTC mechanism, but has the same properties, exists (Appendix B). We then obtain

a contradiction via a well-constructed sequence of preference profiles (by using the lexicographic

nature of preferences).

Lemma 1 (Alva, 2017; Biró et al., 2022a) implies the following corollary.

Corollary 1. A mechanism on RN
l is

� unanimous (or onto),

� individually rational, and

� effectively group (or pairwise) strategy-proof

if and only if it is the cTTC mechanism.

Note that even if one does not consider the domain of lexicographic preference profiles as an

interesting or relevant preference profile domain for multiple-type housing markets, Theorem 1

serves as an important stepping stone to establish the corresponding characterization of the

cTTC mechanism for separable preferences, see Subsection 3.2. To the best of our knowledge,
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the technical tool of “lifting up” a result from lexicographic preferences to separable preferences

is used here for the first time.

We establish the logical independence of the properties in Theorem 1 (Corollary 1) in Ap-

pendix C.

3.2 Characterizing the cTTC mechanism for separable preferences

Note that for lexicographic preferences, under the cTTC mechanism, the importance order of

types plays no role because the allocation of each type only depends on the agents’ marginal

preferences of each type, i.e., for each market R and type t, cTTCt(R) = TTC(Rt
1, . . . , R

t
n).

Thus, one could conjecture that Theorem 1 also holds for separable preferences. This conjecture

is correct.

Theorem 2. A mechanism on RN
s is

� unanimous (or onto),

� individually rational,

� strategy-proof, and

� non-bossy

if and only if it is the cTTC mechanism.

From Proposition 1 it follows that the cTTC mechanism on RN
s satisfies unanimity (or

ontoness), individual rationality, strategy-proofness, and non-bossiness. Next, we explain the

uniqueness part of the proof; the full proof that there is no other mechanism that satisfies the

above properties is relegated to Appendix D.

The uniqueness part of the proof works as follows. We assume that a mechanism is unanimous

(or onto), individually rational, strategy-proof, and non-bossy. By Theorem 1, we know that if

all agents happen to have lexicographic preferences, then the cTTC allocation is assigned. Next,

we consider a preference profile such that only one agent has separable and non-lexicographic

preferences. We show that for this agent, if he (mis)reports lexicographic preferences without

changing his marginal preferences, then he must receive the same allotment. According to Theo-

rem 1, the allotment (in fact, the whole allocation) then equals the cTTC allotment (allocation).

Hence, f assigns the cTTC allocation if all but one agent have lexicographic preferences. By

applying this preference replacement argument, one by one, for all other agents, we conclude

that f equals the cTTC mechanism on the domain of separable preference profiles.

Lemma 1 (Alva, 2017; Biró et al., 2022a) implies the following corollary.
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Corollary 2. A mechanism on RN
s is

� unanimous (or onto),

� individually rational, and

� effectively group (or pairwise) strategy-proof

if and only if it is the cTTC mechanism.

The examples in Appendix C are well-defined on the domain of separable preference profiles

and establish the logical independence of the properties in Theorem 2 (Corollary 2).

3.3 Impossibility results for strict preferences

Note that for m > 1 the cTTC mechanism is not well-defined for strict preferences since for non-

separable preferences, marginal type preferences cannot be derived. Then, a natural question is

if there exists an extension of the cTTC mechanism to the domain of strict preference profiles

that satisfies our properties. First, observe that the impossibility trinity result (Result 5) implies

that for strict preferences, no mechanism satisfies Pareto efficiency, individual rationality, and

strategy-proofness. Our next result shows that weakening Pareto efficiency to unanimity cannot

resolve this impossibility.

Theorem 3. Let m > 1. Then, no mechanism on RN is

� unanimous,

� individually rational, and

� strategy-proof.

Proof. Without loss of generality, let m = 2. Suppose that there is a mechanism f : RN → X

that is unanimous, individually rational, and strategy-proof. Let x, y ∈ X\{e} be such that at

x agents 1 and 2 swap their endowments of type 2, i.e.,

x1 = (o11, o
2
2, o

3
1, o

4
1, . . . , o

m
1 ),

x2 = (o12, o
2
1, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, xi = oi

and at y agents 1 and 2 swap their endowments of type 1, i.e.,

y1 = (o12, o
2
1, o

3
1, o

4
1, . . . , o

m
1 ),

y2 = (o11, o
2
2, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, yi = oi.
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Obviously, x ̸= y.

Let R ∈ RN be such that agents 1 and 2 prefer only their allotments at x and y to their

endowments, they disagree on which allocation is the better one, and each other agent ranks his

endowments highest, i.e.,

R1 : x1, y1, o1, . . . ,

R2 : y2, x2, o2, . . . ,

and for each i = 3, . . . , n, Ri : oi, . . . .

Note that R ∈ RN\RN
s . There are only three individually rational allocations at R: x, y, and e.

Let

� R′
1 : x1, o1, . . .,

� R′
2 : y2, o2, . . .,

� R′′
1 : y1, o1, . . ., and

� R′′
2 : x2, o2, . . ..

Suppose that f(R) = e. Then, by unanimity of f , f(R′′
2, R−2) = x, which implies that

agent 2 has an incentive to misreport R′′
2 at R; contradicting strategy-proofness of f . Therefore,

f(R) ∈ {x, y}.
Suppose that f(R) = x. Then, by strategy-proofness of f , f2(R

′
2, R−2) ̸= y2 and hence by

individual rationality of f , f(R′
2, R−2) = e. However, by unanimity of f , f(R′′

1, R
′
2, R−{1,2}) = y,

which implies that agent 1 has an incentive to misreport R′′
1 at (R

′
2, R−2); contradicting strategy-

proofness of f .

Suppose that f(R) = y. Then, by strategy-proofness of f , f1(R
′
1, R−1) ̸= x1 and hence, by

individual rationality of f , f(R′
1, R−1) = e. However, by unanimity of f , f(R′

1, R
′′
2, R−{1,2}) = x,

which implies that agent 2 has an incentive to misreport R′′
2 at (R

′
1, R−1); contradicting strategy-

proofness of f .

Examples 2, 3, and 4 in Appendix C are well-defined on the domain of strict preference

profiles and establish the logical independence of the corresponding properties in Theorem 3.

Our next impossibility result is established by weakening unanimity to ontoness and by

adding non-bossiness.
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Corollary 3. Let m > 1. Then, no mechanism on RN is

� onto,

� individually rational,

� strategy-proof, and

� non-bossy.13

Proof. Let m > 1. Suppose that there is a mechanism f : RN → X that is onto, individually

rational, strategy-proof, and non-bossy.

We first show that the restriction of f to RN
l is onto. Let x ∈ X. Since f is onto on RN ,

there is a preference profile R ∈ RN such that f(R) = x. Next, for each agent i we define

lexicographic preferences R̄i such that xi is the most preferred allotment. Formally, for each

i ∈ N ,

� for each t ∈ T , R̄t
i = xt

i, o
t
i, . . . and

� π̄i = (1, 2, . . . , n).

Let i ∈ N . From strategy-proofness of f , fi(R̄i, R−i)R̄ifi(R) = xi. Since xi is the most

preferred allotment at R̄i, fi(R̄i, R−i) = fi(R) = xi. From non-bossiness of f , f(R̄i, R−i) =

f(R) = x. By applying this argument repeatedly for all agents in N\{i}, we find that f(R̄) =

f(R) = x. Hence, the restriction of f to RN
l is onto.

Thus, the restriction of f to RN
l is onto, individually rational, strategy-proof, and non-

bossy. Then, from Theorem 1 it follows that f on RN
l coincides with the cTTC mechanism.

Now Theorem 4 yields the impossibility result.14

Examples 2, 3, and 4 in Appendix C are well-defined on the domain of strict preference profiles

and establish the logical independence of ontoness, individual rationality, and strategy-proofness

in Corollary 3. The non-bossiness example, Example 5, in Appendix C can be extended to strict

preferences for m = 1; for m > 1 and with separable preferences, the mechanism is extended by

applying it coordinatewise to all object types. The latter extension method does not work for

strict preferences and the independence of non-bossiness from the other properties in Corollary 3

is an open problem for m > 1.

We provide two further impossibility results that are based on extending the cTTC mecha-

nism from lexicographic (separable) preferences to strict preferences in Appendix E.

13Note that Lemma 1 (Alva, 2017; Biró et al., 2022a) implies that we can replace strategy-proofness and non-

bossiness by effective group (or pairwise) strategy-proofness. In fact, on the domain of strict preference profiles,

strategy-proofness and non-bossiness imply group strategy-proofness.
14Alternatively, Lemma 2 (b) together with Theorem 3 implies Corollary 3.
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4 Discussion

Shapley-Scarf housing markets

Our results (Theorem 1 and Theorem 2) can be compared to Takamiya (2001, Corollary 4.16)

for Shapley-Scarf housing markets. In the proof of Theorem 1 we make explicit use of the

steps used by the TTC algorithm to compute the TTC allocation. In contrast, Takamiya’s

proof is not based on the TTC algorithm. Instead, his proof is based on strict core-stability,15

i.e., the absence of weak blocking coalitions and profitable coalitional deviations. His proof

consists of two steps: (1) strict core-stability implies group strategy-proofness and (2) group

strategy-proofness and ontoness together imply Pareto efficiency. Since the cTTC mechanism

neither satisfies Pareto efficiency nor group strategy-proofness, our results and proof strategy are

logically independent. Moreover, Takamiya’s proof strategy cannot be extended to multiple-type

housing markets because weak blocking coalitions and profitable coalitional deviations need not

coincide (see Feng and Klaus, 2022, for details).

Furthermore, comparing the classical TTC characterization by Ma (1994) with that of

Takamiya (2001) yields the following result. For Shapley-Scarf housing markets, an individ-

ually rational and strategy-proof mechanism is Pareto efficient if and only if it is unanimous

and non-bossy. However, this result does not extend to multiple-type housing markets, as il-

lustrated in Example 1, which shows that cTTC is not Pareto efficient (recall that there, the

no-trade allocation cTTC(R) = ((H1, C1), (H2, C2)) is Pareto dominated by the full-trade allo-

cation ((H2, C2), (H1, C1))).

Object allocation problems with multi-demand and without ownership

Our results can be compared to Monte and Tumennasan (2015) and Pápai (2001) for object

allocation problems with multi-demand and without ownership, i.e., agents can consume more

than one object, and the set of objects is a social endowment.

While Monte and Tumennasan (2015) still assume that objects are of different types and

agents can only consume one object of each type, Pápai (2001) imposes no consumption restric-

tion.16 Although both models are slightly different, their characterization results are similar:

the only mechanisms satisfying Pareto efficiency, strategy-proofness, and non-bossiness are se-

quential dictatorships. Clearly, if agents, like in our model, have property rights, sequential

dictatorship mechanisms will not satisfy individual rationality. Thus, their characterization re-

sults imply an impossibility result for our model, in line with our Theorem 3; however, note that

our efficiency notion in Theorem 3, unanimity, is weaker than Pareto efficiency.

15A mechanism is strictly core-stable if it always assigns a strict core allocation.
16In Pápai (2001), agents can consume any set of objects, and their preferences are linear orders over all sets

of objects.
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Object allocation problems with multi-demand and with ownership

Finally, we compare our results (Theorems 1 and 2) to Pápai (2003).

Similarly to Pápai (2001), Pápai (2003) considers a more general model of allocating objects

to the set of agents who can consume any set of objects. In contrast to Pápai (2001), each

object now is owned by an agent and each agent has strict preferences over all objects, and his

preferences over sets of objects are monotonically responsive to these “objects-preferences.”17 In

our model, we impose more structure by assuming that (i) the set of objects is partitioned into

sets of exogenously given types and (ii) each agent owns and wishes to consume one object of

each type.

Pápai (2003) considers strategy-proofness and non-bossiness (as we do) and she introduces

two additional (non-standard) properties: trade sovereignty and strong individual rationality.

Trade sovereignty requires that every feasible allocation that consists of “admissible transac-

tions” should be realized at some preference profile; it allows for trade restrictions and some

objects never being traded and is hence weaker than ontoness (for details see Pápai, 2003).

Strong individual rationality requires that for each agent and all preference relations with the

same objects-preferences as the agent has, individual rationality holds (for details see Pápai,

2003). Note that strong individual rationality is stronger than individual rationality. For in-

stance, if agent 1’s endowment is (H1, C1), and his objects-preferences are R1 : H2, H1, C1, C2,

then allotment (H2, C2) is not strongly individually rational.18

Pápai (2003) shows that the set of mechanisms satisfying trade sovereignty, strong individual

rationality, strategy-proofness, and non-bossiness coincides with the set of segmented trading

cycle mechanisms. In this class of mechanisms, all objects are (endogenously) decomposed into

different segments that can be expressed as the components of a trading possibility graph (which

can express trading restrictions that can even mean that certain objects cannot be traded).

Agents can own at most one object per segment and the TTC algorithm is then executed

separately for each segment. The set of segmented trading cycle mechanisms is large and, for

our model, would include the cTTC mechanism, the no-trade mechanism, and many segmented

trading cycles mechanisms with restricted trades.

17Formally, let O be a finite set of objects. A preference relation ⪰ over all non-empty sets of objects is

monotonically responsive if (i) it is monotonic, i.e., for any two non-empty subsets of objects, A,B ⊆ O, A ⊆ B

implies that B ⪰ A; and (ii) responsive, i.e., there exists a strict “objects-preference relation” over all objects,

R, such that for any two distinct objects o, o′ ∈ O, and a subset of objects A ⊆ O\{o, o′}, o P o′ implies that

{o} ∪ A ≻ {o′} ∪ A. In our model, since agents’ allotments have a fixed number of objects, monotonicity of

preferences over sets of objects plays no role. Furthermore, given our constraint that each agent needs to receive

an object of each type, responsiveness corresponds to separability.
18Let ≻̃1 : (H2, C1), (H1, C1), (H2, C2), (H1, C2) and ≻̂1 : (H2, C1), (H2, C2), (H1, C1), (H1, C2). Note that both

preferences are responsive to R1. We see that (H2, C2) ≻̂1 (H1, C1) but (H1, C1) ≻̃1 (H2, C2). Thus, (H2, C2) is

individually rational at ≻̂1 but not individually rational at ≻̃1.
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The cTTC mechanism is a specific segmented trading cycle mechanism in the sense that

all segments are a priori determined by object types. Thus, our characterization result of the

cTTC mechanism can be seen as characterizing a specific segmented trading cycle mechanism

while Pápai characterizes the whole class of segmented trading cycle mechanisms. On the one

hand, we weaken strong individual rationality to individual rationality but strengthen trade

sovereignty to ontoness. On the other hand, we consider two different preference domains that

reflect some responsiveness through separability. Therefore, while there is a close connection

between our models and results, there is no direct logical relation between Pápai (2003)’s result

and ours (Theorems 1 and 2).

Appendix

A Auxiliary properties and results

In Appendix A, we introduce auxiliary properties and prove results so that we can prove Theo-

rem 1 in Appendix B. While some of the results in Appendix A can also be proven for separable

preferences, we focus on lexicographic preferences because Theorem 1 deals with lexicographic

preferences.

We introduce the well-known property of (Maskin) monotonicity, which requires that if an

allocation is chosen, then that allocation will still be chosen if each agent shifts it up in his

preferences.

Let i ∈ N . Given preferences Ri ∈ Rl and an allotment xi, let L(xi, Ri) = {yi ∈ Πt∈TO
t |

xi Ri yi} be the lower contour set of Ri at xi. Preference relation R′
i ∈ Rl is a monotonic

transformation of Ri at xi if L(xi, Ri) ⊆ L(xi, R
′
i). Similarly, given a preference profile R ∈ RN

l

and an allocation x, a preference profile R′ ∈ RN
l is a monotonic transformation of R at x if for

each i ∈ N , R′
i is a monotonic transformation of Ri at xi.

Definition 11 (Monotonicity).

A mechanism f on RN
l is monotonic if for each R ∈ RN

l and for each monotonic transformation

R′ ∈ RN
l of R at f(R), we have f(R′) = f(R).

We show that strategy-proofness and non-bossiness imply monotonicity.

Lemma 3. If a mechanism on RN
l is strategy-proof and non-bossy, then it is monotonic.

Proof. The proof is a straightforward extension of Takamiya (2001, Theorem 4.12) and Pápai

(2001, Lemma 1). Suppose mechanism f on RN
l is strategy-proof and non-bossy. Let R ∈ RN

l

and let x = f(R). Let R′ ∈ RN
l be a monotonic transformation of R at x. Let i ∈ N and

y = f(R′
i, R−i). By strategy-proofness of f , we have xiRi yi, which implies that yi ∈ L(xi, Ri) ⊆

L(xi, R
′
i). However, by strategy-proofness of f , we also have yi R

′
i xi. Thus, since yi ∈ L(xi, R

′
i),
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xi = yi. Then, by non-bossiness of f , we have x = y. By applying this argument sequentially

for all agents in N\{i}, we find that f(R) = x = f(R′).

The converse of Lemma 3 is not true: lexicographic preferences are not rich enough to satisfy

Alva’s (2017) preference domain richness condition two-point connectedness.

Next, we introduce a “marginal version” of monotonic preference transformations. Let i ∈ N .

Given preferences Ri ∈ Rl and an allotment xi, for each type t, consider the associated marginal

preferences Rt
i and marginal allotment xt

i. Let L(xt
i, R

t
i) = {yti ∈ Ot | xt

i R
t
i y

t
i} be the lower

contour set of Rt
i at x

t
i. Marginal preference relation R̂t

i is a monotonic transformation of Rt
i at

xt
i if L(x

t
i, R

t
i) ⊆ L(xt

i, R̂
t
i).

Fact 1. Let xi be an allotment. Let Ri, R̂i be lexicographic preferences such that (1) πi = π̂i

and (2) for each t ∈ T , R̂t
i is a monotonic transformation of Rt

i at x
t
i. Then, R̂i is a monotonic

transformation of Ri at xi.

Proof. We show that L(xi, Ri) ⊆ L(xi, R̂i). Let yi ∈ L(xi, Ri) with yi ̸= xi. Then, xi Pi yi.

Restate yi and xi as yπi
i = (y

πi(1)
i , . . . , y

πi(m)
i ) and xπi

i = (x
πi(1)
i , . . . , x

πi(m)
i ), respectively. Let k

be the first type for which xi and yi assign different objects, i.e., for all l < k, y
πi(l)
i = x

πi(l)
i and

y
πi(k)
i ̸= x

πi(k)
i . Since xi Pi yi and preferences are lexicographic, we have x

πi(k)
i P

πi(k)
i y

πi(k)
i . Thus,

y
πi(k)
i ∈ L(x

πi(k)
i , R

πi(k)
i ) ⊆ L(x

πi(k)
i , R̂

πi(k)
i ), which implies that x

πi(k)
i P̂

πi(k)
i y

πi(k)
i . Then, since

πi = π̂i, xi P̂i yi, i.e., yi ∈ L(xi, R̂i).

Therefore, by monotonicity, if an agent receives an allotment and shifts each of its objects

up in the marginal preferences (without changing his importance order), he still receives that

allotment and the allotments of the other agents do not change either.

Next, for lexicographic preferences, we introduce a new property, marginal individual ratio-

nality, which is a stronger property than individual rationality.

Definition 12 (Marginal individual rationality).

A mechanism f on RN
l is marginally individually rational if for each R ∈ RN

l , each i ∈ N , and

each t ∈ T , f t
i (R)Rt

i o
t
i.

Lemma 4. A mechanism on RN
l is unanimous, individually rational, strategy-proof, and non-

bossy, then it is marginally individually rational.

Proof. Suppose mechanism f on RN
l is unanimous, individually rational, strategy-proof, non-

bossy, and not marginally individually rational, i.e., there exist a preference profile R ∈ RN
l , an

agent i ∈ N , and a type t ∈ T such that oti P
t
i f

t
i (R). Then, by individual rationality of f , we

know that t ̸= πi(1).
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Let x ≡ f(R). Consider a preference profile R̂ ∈ RN
l such that

for agent i,

� R̂t
i : o

t
i, x

t
i, . . . ,

� for each τ ∈ T\{t}, R̂τ
i : xτ

i , . . . , and

� π̂i = π;

and for each agent j ∈ N\{i},

� for each τ ∈ T , R̂τ
j : xτ

j , . . . , and

� π̂j = πj.

Note that, by Fact 1, R̂ is a monotonic transformation of R at x. By Lemma 3, f is monotonic.

Thus, f(R̂) = x.

Next, consider a preference profile (R̄i, R̂−i) ∈ RN
l , where R̄i is such that

� for each τ ∈ T , R̄τ
i = R̂τ

i , and

� π̄i(1) = t.

Note that R̄i can be interpreted as a linear order over all objects such that R̄i : o
t
i, . . ., i.e., object

oti is the most preferred object.

Let y ≡ f(R̄i, R̂−i). By individual rationality of f , yti = oti. Thus, yi ̸= xi. By strategy-

proofness of f , xi = f(R̂i, R̂−i) P̂i f(R̄i, R̂−i) = yi. Since agent i gains in type t by misreporting

at R̂ (i.e., yti = oti P̂
t
i f

t
i (R̂) = xt

i), he must lose in some other more important type according to

π̂i. That is, there is a type t′ ̸= t such that (1) π̂−1
i (t′) < π̂−1

i (t) and (2) xt′
i P̂

t′
i yt

′
i . In particular,

xt′
i ̸= yt

′
i .

Next, consider a preference profile R̄ ≡ (R̄i, R̄−i) such that

for each agent j ∈ N\{i},

� R̄t
j : y

t
j, . . . ,

� for each τ ∈ T\{t}, R̄τ
j = R̂τ

i , and

� π̄j = π̂j.

Note that the only relevant difference between R̄ and (R̄i, R̂−i) is that under R̄, each agent

j ̸= i positions ytj as his most preferred type-t object. Thus, R̄ is a monotonic transformation of

(R̄i, R̂−i) at y. Therefore, by monotonicity of f , f(R̄) = y.

However, under R̄, for each agent k ∈ N , his most preferred allotment is zk =

(x1
k, . . . , x

t−1
k , ytk, x

t+1
k , . . . , xm

k ). Note that z = (zk)k∈N ∈ X is an allocation because z is a

mixture of y (for type t) and x (for other types). Thus, by unanimity of f , f(R̄) = z. So, y = z.

However, for type t′, zt
′
i = xt′

i ̸= yt
′
i , a contradiction.
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B Proof of Theorem 1: uniqueness

Proof of Theorem 1: uniqueness. Suppose that there is a mechanism f : RN
l → X, differ-

ent from the cTTC mechanism, that satisfies the properties listed in Theorem 1 (by Lemma 2,

ontoness and unanimity can be used interchangeably). Then, there is a market R such that

y ≡ f(R) ̸= cTTC(R) ≡ x. In particular, there is a type t such that (yt1, . . . , y
t
n) ̸= (xt

1, . . . , x
t
n).

By Lemma 3, both mechanisms, f and cTTC, are monotonic. By Lemma 4, both mecha-

nisms, f and cTTC, are marginally individually rational. Since both mechanisms are marginally

individually rational, for each i ∈ N and each τ ∈ T , yτi R
τ
i o

τ
i and xτ

iR
τ
i o

τ
i . So, we can define a

preference profile R̂ ∈ RN
l such that

for each agent i ∈ N ,

� R̂t
i :

{
xt
i, y

t
i , o

t
i, . . . if xt

i R
t
i y

t
i

yti , x
t
i, o

t
i, . . . if yti R

t
i x

t
i

� for each τ ∈ T\{t}, R̂τ
i : yτi , o

τ
i , . . . , and

� π̂i = πi.

Note that, by Fact 1, R̂ is a monotonic transformation of R at y. Since f is monotonic, f(R̂) = y.

Furthermore, since R̂t is a monotonic transformation of Rt at xt, monotonicity of the TTC

mechanism implies cTTCt(R̂) = TTC(R̂t) = xt.

Next, consider a preference profile R̄ ∈ RN
l such that

for each agent i ∈ N ,

� R̄t
i : x

t
i, o

t
i, . . . ,

� for each τ ∈ T\{t} R̄τ
i = R̂τ

i , and

� π̄i = πi.

Note that the only relevant difference between R̄ and R̂ is that under R̄, each agent i ∈ N

positions xt
i as his most preferred type-t object and his endowment oti as his second preferred.

Under R̄, each agent i’s most preferred allotment is zi ≡ (y1i , . . . , y
t−1
i , xt

i, y
t+1
i , . . . , ymi ). Note

that z = (zi)i∈N ∈ X is an allocation because z is a mixture of x (for type t) and y (for other

types). Thus, by unanimity of f , f(R̄) = z.

Recall that since (xt
1, . . . , x

t
n) = cTTCt(R̂) = TTC(R̂t), (xt

1, . . . , x
t
n) is obtained by applying

the TTC algorithm to preference profile R̂t. For each i ∈ N , let si be the step of the TTC

algorithm at which agent i receives object xt
i. Without loss of generality, assume that if i < i′

then si ≤ si′ .
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Next, we will show that f(R̂) = z by using that f(R̄) = z and replacing, step-by-step, each R̄i

with R̂i. More specifically, we will replace the individual preferences in the order n, n− 1, . . . , 1.

We first show that f(R̄−n, R̂n) = z. Suppose xt
n R̂t

n ytn. Then, (R̄−n, R̂n) is a monotonic

transformation of R̄ at z. By monotonicity of f , f(R̄−n, R̂n) = f(R̄) = z.

Now suppose ytn P̂ t
n xt

n. Let τ ∈ T such that πn(τ) = 1 < πn(t) (if πn(t) = 1, then skip this

step). Since f is strategy-proof, preferences are lexicographic, and τ is the most important type

for agent n, we have f τ
n(R̄−n, R̂n)R̂

τ
nf

τ
n(R̄). Since τ ̸= t, f τ

n(R̄) = zτn = yτn and f τ
n(R̄−n, R̂n)R̂

τ
ny

τ
n.

Since τ ̸= t, it follows from the definition of R̂τ
n that yτn is the best type-τ object. So,

f τ
n(R̄−n, R̂n) = yτn. Now one can, sequentially, from more to less important types, apply similar

arguments to show that

for each type t′ ∈ T with πn(t
′) < πn(t), f

t′

n (R̄−n, R̂n) = yt
′

n = f t′

n (R̄). (1)

Since f is marginally individually rational, f t
n(R̄−n, R̂n) ∈ {xt

n, y
t
n, o

t
n}. Suppose

f t
n(R̄−n, R̂n) = otn and otn ̸= xt

n. Then, f t
n(R̄) = ztn = xt

n P̂ t
n otn = f t

n(R̄−n, R̂n), which together

with (1) would contradict the strategy-proofness of f . Hence, f t
n(R̄−n, R̂n) ∈ {xt

n, y
t
n}.

Suppose that f t
n(R̄−n, R̂n) = ytn. By the definition of the TTC algorithm, xt

n is agent n’s

most preferred type-t object among the remaining objects at Step sn of the TTC algorithm at

preference profile R̂t. Therefore, object ytn is removed (i.e., assigned to some agent) at some

Step s∗ < sn of the TTC algorithm at preference profile R̂t.

Let C be the trading cycle of the TTC algorithm at preference profile R̂t that contains ytn.

Suppose C only contains one agent, say j ̸= n. Then, among all objects present at Step s∗, agent j

most prefers his own endowment, i.e., otj = ytn. Hence, x
t
j = cTTCt

j(R̂) = TTCj(R̂
t) = ytn = otj.

So, by definition of R̄, we have that at (R̄−n, R̂n) agent j’s marginal preferences of type t are given

by R̄t
j : otj, . . .. By marginal individual rationality of f , f t

j (R̄−n, R̂n) = ytn, which contradicts

f t
n(R̄−n, R̂n) = ytn.

Hence, C consists of agents i1, i2, . . . , iK (with K ≥ 2) and type-t objects oti1 , . . . , o
t
iK

such

that n ̸∈ {i1, . . . , iK} and ytn ∈ {oti1 , . . . , o
t
iK
}. Without loss of generality, the cycle C is or-

dered (i1, i2, . . . , iK). Note that at (R̄−n, R̂n), for each ik ∈ {i1, . . . , iK}, agent ik’s marginal

preferences of type t are R̄t
ik

: otik+1
(= xt

ik
), otik , . . . (modulo K). Without loss of generality, as-

sume that ytn = oti1 . It follows from f t
n(R̄−n, R̂n) = ytn and marginal individual rationality of

f that f t
iK
(R̄−n, R̂n) = otiK . Subsequently, for each agent ik ∈ {i2, . . . , iK}, f t

ik
(R̄−n, R̂n) = otik .

Therefore, f t
i1
(R̄−n, R̂n) ̸= oti2 . Moreover, f t

i1
(R̄−n, R̂n) ̸= oti1 because f t

n(R̄−n, R̂n) = ytn = oti1 .

Thus, oti1 P̄i1 f t
i1
(R̄−n, R̂n), which violates marginal individual rationality of f . Therefore,

f t
n(R̄−n, R̂n) ̸= ytn. Hence,

f t
n(R̄−n, R̂n) = xt

n = f t
n(R̄). (2)

Having established (1) and (2), one can use arguments similar to those for (1) to show that

for each type t′ ∈ T with πn(t
′) > πn(t), f

t′

n (R̄−n, R̂n) = yt
′

n = f t′

n (R̄). (3)
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From (1), (2), and (3) it follows that for each type τ ∈ T , f τ
n(R̄−n, R̂n) = f τ

n(R̄). Hence,

fn(R̄−n, R̂n) = fn(R̄). By non-bossiness of f , f(R̄−n, R̂n) = f(R̄) = z.

By applying repeatedly the same arguments for agents i = n− 1, . . . , 1, we can sequentially

replace each R̄i with R̂i, and conclude that f(R̂) = f(R̄) = z. However, since (yt1, . . . , y
t
n) ̸=

(xt
1, . . . , x

t
n), there exists an agent j such that ytj ̸= xt

j. Hence, f t
j (R̂) = ytj ̸= xt

j = ztj, a

contradiction.

C Independence of properties in Theorem 1

The following examples establish the logical independence of the properties in Theorem 1 (Corol-

lary 1) on RN
l . We label the examples by the property/properties that is/are not satisfied.

Example 2 (Ontoness and unanimity).

The no-trade mechanism that always assigns the endowment allocation to each market is indi-

vidually rational, (group) strategy-proof, and non-bossy, but neither onto nor unanimous. ⋄

The no-trade mechanism in Example 2 is well-defined on RN
l , RN

s , and RN .

Example 3 (Individual rationality).

By ignoring property rights that are established via the endowments, we can easily adjust the

well-known mechanism of serial dictatorship to our setting: based on an ordering of agents,

we let agents sequentially choose their allotments. Serial dictatorship mechanisms have been

shown in various resource allocation models to satisfy Pareto efficiency (and hence ontoness

and unanimity), strategy-proofness, and non-bossiness; since property rights are ignored, they

violate individual rationality (e.g., see Monte and Tumennasan, 2015, Theorem 1). ⋄

The serial dictatorship mechanism in Example 3 is well-defined on RN
l , RN

s , and RN .

Example 4 (Strategy-proofness).

We adapt so-called Multiple-Serial-IR mechanisms introduced by Biró et al. (2022b) for their

circulation model to our multiple-type housing markets model. A Multiple-Serial-IR mechanism

is determined by a fixed order of the agents. At any preference profile and following the order,

the mechanism lets each agent pick his most preferred allotment from the available objects such

that this choice together with previous agents’ choices is compatible with an individually rational

allocation. Formally,

Input. An order δ = (i1, . . . , in) of the agents and a multiple-type housing market R ∈ RN
l .

Step 0. Let Y (0) be the set of individually rational allocations in X.

Step 1. Let Y1 be the set of agent i1’s allotments that are compatible with some allocation in

Y (0), i.e., Y1 consists of all yi1 ∈ Πt∈TO
t for which there exists an allocation x ∈ Y (0) such that

xi1 = yi1 .
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Let y∗i1 be agent i1’s most preferred allotment in Y1, i.e., for each yi1 ∈ Y1, y
∗
i1
Ri yi1 .

Let Y (1) ⊆ Y (0) be the set of allocations in Y (0) that are compatible with y∗i1 , i.e., Y (1) consists

of all x ∈ Y (0) with xi1 = y∗i1 .

Step k = 2, . . . , n. Let Yk be the set of agent ik’s allotments that are compatible with some

allocation in Y (k − 1).

Let y∗ik be agent ik’s most preferred allotment in Yk.

Let Y (k) ⊆ Y (k − 1) be the set of allocations in Y (k − 1) that are compatible with y∗ik .

Output. The allocation of the Multiple-Serial-IR mechanism associated with δ at R is

MSIR(δ, R) ≡ (y∗1, y
∗
2, . . . , y

∗
n).

Given an order δ, the associated Multiple-Serial-IR mechanism ∆ assigns to each market R the

allocation ∆(R) ≡ MSIR(δ, R).

Biró et al. (2022b) show that Multiple-Serial-IR mechanisms are individually rational and

Pareto efficient.

Next, we show that Multiple-Serial-IR mechanisms are non-bossy. Let δ = (i1, . . . , in) be an

order of the agents and let ∆ denote the associated Multiple-Serial-IR mechanism.

Let R ∈ RN
l , i ∈ N , and R′

i ∈ Rl. Let R′ ≡ (R′
i, R−i), x ≡ ∆(R), and y ≡ ∆(R′). Assume

yi = xi. We show that y = x.

Let ik ≡ i. Since yi = xi and for each ℓ = 2, . . . , k−1, k+1, . . . , n, R′
iℓ
= Riℓ , agent i1’s choice

at Step 1 under R′ is restricted in the same way as agent i1’s choice at Step 1 under R. Thus, since

R′
i1
= Ri1 , we have yi1 = xi1 . Similar arguments show that for each ℓ = 2, . . . , k−1, k+1, . . . , n,

yiℓ = xiℓ . Hence, ∆ is non-bossy.

In the context of multiple-type housing markets, Konishi et al. (2001) show that there is

no mechanism that is Pareto efficient, individually rational, and strategy-proof. Since Multiple-

Serial-IR mechanisms are Pareto efficient and individually rational, they are not strategy-proof.

We include a simple illustrative example for n = 2 agents and m = 2 types for completeness.

Let N = {1, 2} and T = {H(ouse), C(ar)}. For each i ∈ N , let (Hi, Ci) be agent i’s

endowment. Let R ∈ RN
l be given by

R1 : H2,H1, C2,C1,

R2 : H1,H2,C2, C1.

Consider the Multiple-Serial-IR mechanism ∆ induced by δ = (1, 2), i.e., agent 1 moves first

(note that since there are only two agents, when agent 1 picks his allotment, the final allocation

is completely determined). Since allocation x ≡ ((H2, C2), (H1, C1)) is individually rational at

R and x1 = (H2, C2) is agent 1’s most preferred allotment, ∆(R) = x.

Next, consider R′
2 : C2, C1, H1,H2. Note that at (R1, R

′
2), only y ≡ ((H2, C1), (H1, C2)) and

e are individually rational. Thus, agent 1 can only pick y1 or o1. Since y1 R1 o1, agent 1 picks
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y1 and hence ∆(R1, R
′
2) = y. Finally, we see that y2 R2 x2, which implies that agent 2 has an

incentive to misreport R′
2 at R. Hence, the Multiple-Serial-IR mechanism induced by δ = (1, 2)

is not strategy-proof. ⋄

The mechanism in Example 4 is well-defined on RN
l , RN

s , and RN .

Note that if n = 2, then any mechanism is non-bossy. Thus, for our last independence

example, we assume n > 2.

Example 5 (Non-bossiness).

We first provide an example of a mechanism for n = 3 and m = 1. Let N = {1, 2, 3} and

T = {H(ouse)}. Let R ∈ RN . We say that agents 1 and 3 are in conflict if H2 is the most

preferred object for both R1 and R3. Similarly, we say that agents 1 and 2 are in conflict if H3

is the most preferred object for both R1 and R2. Let mechanism f be defined as follows: for

each R ∈ RN ,

(a) if agents 1 and 2 are in conflict, then (i) transform R2 to R̄2 by dropping H3 to the

bottom, i.e., R̄2 : . . . , H3, while keeping the relative order of H1 and H2, and (ii) set

f(R) ≡ TTC(R1, R̄2, R3);

(b) if agents 1 and 3 are in conflict, then (i) transform R3 to R̄3 by dropping H2 to the

bottom, i.e., R̄3 : . . . , H2, while keeping the relative order of H1 and H3, and (ii) set

f(R) ≡ TTC(R1, R2, R̄3);

(c) if agent 1 is not in conflict with either agent 2 or agent 3, then f(R) ≡ TTC(R).

It is easy to verify that f is individually rational and unanimous. We prove that f is strategy-

proof in Appendix C.1. To see that f is bossy, let R be such that

R1 : H3,H1, H2,

R2 : H3,H2, H1,

R3 : H2,H3, H1.

Then, since agents 1 and 2 are in conflict, we have R̄2 : H2, H1, H3 and f(R) = TTC(R̄2, R−2).

In particular, for each i = 1, 2, 3, fi(R) = Hi. Next consider R′
1 : H1, . . .. Then, f(R′

1, R−1) =

TTC(R′
1, R−1). In particular, f1(R

′
1, R−1) = H1, f2(R

′
1, R−1) = H3, and f3(R

′
1, R−1) = H2.

Therefore, f1(R
′
1, R−1) = H1 = f1(R), f2(R

′
1, R−1) = H3 ̸= H2 = f2(R), and f3(R

′
1, R−1) =

H2 ̸= H3 = f3(R). Hence, f is bossy (and not Pareto efficient).

Next, we extend mechanism f from n = 3 to any n > 3. Let n > 3 and recall that m = 1.

An object o ∈ O is acceptable for agent i ∈ N if oRi Hi. Let mechanism g be defined as follows:

for each R ∈ RN ,
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Case (A) if some agent i ∈ {4, . . . , n} finds some object different from his endowment accept-

able, then set g(R) ≡ TTC(R);

Case (B) if each agent i ∈ {4, . . . , n} only finds his own endowment acceptable, then

� let N ′ ≡ {1, 2, 3} and for each i ∈ N ′, let gi(R) ≡ fi(R|N ′) where R|N ′ denotes the

preferences of agents in N ′ restricted to {H1, H2, H3};

� for each agent i ∈ {4, . . . , n}, gi(R) ≡ Hi.

Since f and TTC are individually rational and unanimous, g is individually rational and

unanimous. Since f is bossy, g is bossy as well.

Next, we show that g is strategy-proof. First, we verify that no agent i ∈ {4, . . . , n} can

profitably misreport his preferences. If R is in case (A), then a misreport by agent i that creates

another profile in case (A) does not lead to a more preferred allotment because TTC is strategy-

proof ; a misreport that creates a profile in case (B) assigns endowment Hi to agent i. In either

case, the misreport does not yield a more preferred allotment for agent i. If R is in case (B),

then each agent i ∈ {4, . . . , n} obtains his most preferred object (his own endowment) and hence

cannot gain by misreporting his preferences.

Second, no agent in {1, 2, 3} can “move” R from case (A) to case (B) nor from case (B)

to case (A). If R is in case (A), no agent in {1, 2, 3} can profitably misreport his preferences

because TTC is strategy-proof. If R is in case (B), no agent in {1, 2, 3} can profitably misreport

his preferences because f is strategy-proof. Hence, g is strategy-proof.

Finally, we extend mechanism g from Shapley-Scarf housing markets to multiple-type housing

markets with lexicographic (or separable) preferences by applying it coordinatewise to all object

types. Let h be the mechanism that assigns the objects of each type t according to g. Then, h

is unanimous (and hence onto), individually rational, and strategy-proof, but bossy. ⋄

The mechanism in Example 5 is well-defined on RN
l and RN

s (but not on RN).

C.1 Proof of strategy-proofness in Example 5

We show that mechanism f on RN defined in Example 5 for n = 3 and m = 1 is strategy-proof.

Proof. Let R ∈ RN . We consider three cases.

Case 1. Preferences of agent 1 are R1 : H1, . . ..

By individual rationality of f , f1(R) = H1 and since this is his most preferred object, agent 1

cannot gain by misreporting his preferences.

Let R′
2 be some misreport of agent 2. Since agents 1 and 2 are not in conflict at R nor

at (R1, R
′
2, R3), mechanism f yields the corresponding TTC allocations at R and (R1, R

′
2, R3).
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Hence, by strategy-proofness of TTC, agent 2 does not have a profitable deviation at R. Simi-

larly, agent 3 does not have a profitable deviation at R.

Case 2. Preferences of agent 1 are R1 : H2, H1, H3. (Since agents 2 and 3 play a symmetric

role in the definition of f , similar symmetric arguments work for H3, H1, H2.)

Agents 1 and 2 are not in conflict. Hence, by strategy-proofness of TTC, agent 2 does not have

a profitable deviation at R.

Next, we verify that agent 1 does not have a profitable deviation at R.

Case 2.a. Preferences of agent 2 are R2 : H2, . . ..

Note that by individual rationality of f we have f2(R) = H2. So, f1(R) = H1. Reporting any

other preferences will not give himH2 either. So, agent 1 does not have a profitable deviation

at R.

Case 2.b. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 :

H2, H3, H1.

Agents 1 and 3 are in conflict and one easily verifies that f(R) is the no-trade allocation. In

particular, agent 1 receives his endowment H1 at R. Obviously, misreporting R′
1 : H1, . . . gives

himH1. Any other misreport of agent 1’s preferences yields the no-trade allocation. So, agent 1

does not have a profitable deviation at R.

Case 2.c. Preferences of agent 2 are R2 : H1, . . . or preferences of agent 2 are R2 : H3, H1, H2 or

[ preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are not R3 : H2, H3, H1 ].

It is easy but cumbersome to verify that f1(R) = H2, i.e., agent 1 receives his most preferred

object H2. So, agent 1 does not have a profitable deviation at R.

Finally, we verify that agent 3 does not have a profitable deviation at R.

Case 2.I. Preferences of agent 3 are R3 : H3, . . ..

By individual rationality of f , f3(R) = H3 and since this is his most preferred object, agent 3

cannot gain by misreporting his preferences.

Case 2.II. Preferences of agent 3 are R3 : H1, . . ..

Agents 1 and 3 are not in conflict and by strategy-proofness of TTC, agent 3 does not have a

profitable deviation at R.

Case 2.III. Preferences of agent 3 are R3 : H2, H3, H1.

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H3. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However, if R2 :

H1, . . . or R2 : H2, . . . , then f3(R1, R2, R
′
3) = H3; and if R2 : H3, . . . , then f3(R1, R2, R

′
3) = H1.

So, agent 3 does not have a profitable deviation at R.

Case 2.IV.i. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H1, . . .

or R2 : H2, . . ..
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Agents 1 and 3 are in conflict and for any possible deviation R′
3, f3(R1, R2, R

′
3) = H3 = f3(R).

Hence, agent 3 does not have a profitable deviation at R.

Case 2.IV.ii. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 :

H3, . . ..

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H1. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However,

f3(R1, R2, R
′
3) = H1. So, agent 3 does not have a profitable deviation at R.

Case 3. Preferences of agent 1 are R1 : H2, H3, H1. (Since agents 2 and 3 play a symmetric

role in the definition of f , similar symmetric arguments work for H3, H2, H1.)

Agents 1 and 2 are not in conflict. Hence, by strategy-proofness of TTC, agent 2 does not have

a profitable deviation at R.

Next, we verify that agent 1 does not have a profitable deviation at R.

Case 3.a. Preferences of agent 2 are R2 : H1, . . ..

One immediately verifies that f1(R) = H2, which is his most preferred object. So, agent 1 does

not have a profitable deviation at R.

Case 3.b. Preferences of agent 2 are R2 : H2, . . . and preferences of agent 3 are R3 : H1, . . . or

R3 : H2, H1, H3.

Then, for any possible deviation R′
1, f1(R

′
1, R2, R3) = H3 = f1(R). Hence, agent 1 does not have

a profitable deviation at R.

Case 3.c. Preferences of agent 2 are R2 : H2, . . . and preferences of agent 3 are R3 : H3, . . . or

R3 : H2, H3, H1;

or

Case 3.d. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 : H3, . . .

or R3 : H2, H3, H1.

In cases 3.c and 3.d, we have that for any possible deviation R′
1, f1(R

′
1, R2, R3) = H1 = f1(R).

Hence, agent 1 does not have a profitable deviation at R.

Case 3.e. Preferences of agent 2 are R2 : H3, . . . and preferences of agent 3 are R3 : H1, . . .;

or

Case 3.f. Preferences of agent 2 are R2 : H3, H2, H1 and preferences of agent 3 are R3 :

H2, H1, H3;

or

Case 3.g. Preferences of agent 2 are R2 : H3, H1, H2 and preferences of agent 3 are R3 : H2, . . ..

In cases 3.e, 3.f, and 3.g, f1(R) = H2, i.e., agent 1 receives his most preferred object H2. So,

agent 1 does not have a profitable deviation at R.

Finally, we verify that agent 3 does not have a profitable deviation at R. Cases 3.I, 3.II, and

3.III below are as 2.I, 2.II, and 2.III. There is a small difference between cases 2.IV and 3.IV.
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Case 3.I. Preferences of agent 3 are R3 : H3, . . ..

By individual rationality of f , f3(R) = H3 and since this is his most preferred object, agent 3

cannot gain by misreporting his preferences.

Case 3.II. Preferences of agent 3 are R3 : H1, . . ..

Agents 1 and 3 are not in conflict and by strategy-proofness of TTC, agent 3 does not have a

profitable deviation at R.

Case 3.III. Preferences of agent 3 are R3 : H2, H3, H1.

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H3. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However, if R2 :

H1, . . . or R2 : H2, . . . , then f3(R1, R2, R
′
3) = H3; and if R2 : H3, . . . , then f3(R1, R2, R

′
3) = H1.

So, agent 3 does not have a profitable deviation at R.

Case 3.IV.i. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H1, . . ..

Agents 1 and 3 are in conflict and for any possible deviation R′
3, f3(R1, R2, R

′
3) = H3 = f3(R).

Hence, agent 3 does not have a profitable deviation at R.

Case 3.IV.ii. Preferences of agent 3 are R3 : H2, H1, H3 and preferences of agent 2 are R2 : H2, . . .

or R2 : H3, . . ..

Agents 1 and 3 are in conflict and one easily verifies that f3(R) = H1. Any possible profitable

misreport of preferences by agent 3 requires that H2 is acceptable and appears in second position.

Hence, the only possible candidate for a profitable deviation is R′
3 : H1, H2, H3. However,

f3(R1, R2, R
′
3) = H1. So, agent 3 does not have a profitable deviation at R.

D Proof of Theorem 2: uniqueness

Proof of Theorem 2: uniqueness. Suppose that mechanism f : RN
s → X satisfies the prop-

erties listed in Theorem 2 (by Lemma 2, ontoness and unanimity can be used interchangeably).

We will show that for each R ∈ RN
s , f(R) = cTTC(R). We introduce the following notation.

For any agent i ∈ N and any two separable preferences Ri, R̄i ∈ Rs, we write Ri ∼ R̄i if they

induce the same marginal preferences, i.e., for each t ∈ T , Rt
i = R̄t

i.

Let R ∈ RN
s such that each agent has lexicographic preferences, i.e., R ∈ RN

l . Since the

restriction of f to RN
l satisfies the properties listed in Theorem 1, it immediately follows from

Theorem 1 that f(R) = cTTC(R).

Let R ∈ RN
s such that only one agent does not have lexicographic preferences. We can

assume, without loss of generality, that R1 ∈ Rs\Rl and for each agent j ̸= 1, Rj ∈ Rl. Let

y ≡ f(R).
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For each t ∈ T , define R′
1(t) ∈ Rl such that R′

1(t) ∼ R1 and the most important type of R′
1(t)

is type t. Since R1 ∼ R′
1(1) ∼ R′

1(2) ∼ · · · ∼ R′
1(m), it follows from the definition of cTTC that

x ≡ cTTC(R) = cTTC(R′
1(1), R−1) = cTTC(R′

1(2), R−1) = · · · = cTTC(R′
1(m), R−1). We will

show that y = x.

Let t ∈ T . From the case where each agent has lexicographic preferences, it follows

that f(R′
1(t), R−1) = cTTC(R′

1(t), R−1) = x. By strategy-proofness of f when moving from

(R′
1(t), R−1) to (R1, R−1), x1 = f1(R

′
1(t), R−1) R

′
1(t) f1(R1, R−1) = y1. Then, since R′

1(t) ∼ R1

and R′
1(t) is a lexicographic preference relation where t is the most important type, xt

1 R
t
1 y

t
1.

Since for each t ∈ T , xt
1R

t
1 y

t
1 and since R1 ∈ Rs, we have x1R1 y1. By strategy-proofness of f

when moving from (R1, R−1) to (R′
1(t), R−1), we have that y1 = f1(R1, R−1)R1 f1(R

′
1(t), R−1) =

x1. Hence, x1 = y1. By non-bossiness of f , we have that y = f(R1, R−1) = f(R′
1(t), R−1) = x.

Let R ∈ RN
s such that exactly two agents do not have lexicographic preferences. We can

assume, without loss of generality, that R1, R2 ∈ Rs\Rl and for each agent j ̸= 1, 2, Rj ∈ Rl.

Let y ≡ f(R).

For each t ∈ T , define R′
2(t) ∈ Rl such that R′

2(t) ∼ R2 and the most important type of R′
2(t)

is type t. Since R2 ∼ R′
2(1) ∼ R′

2(2) ∼ · · · ∼ R′
2(m), it follows from the definition of cTTC that

x ≡ cTTC(R) = cTTC(R′
2(1), R−2) = cTTC(R′

2(2), R−2) = · · · = cTTC(R′
2(m), R−2). We will

show that y = x.

Let t ∈ T . At preference profile (R′
2(t), R−2), only agent 1 has non-lexicographic prefer-

ences. Thus, from the previous case, f(R′
2(t), R−2) = cTTC(R′

2(t), R−2) = cTTC(R) = x.

By strategy-proofness of f when moving from (R′
2(t), R−2) to (R2, R−2), we have that x2 =

f2(R
′
2(t), R−2) R

′
2(t) f2(R2, R−2) = y2. Then, since R′

2(t) ∼ R2 and R′
2(t) is a lexicographic

preference relation where t is the most important type, xt
2 R

t
2 y

t
2.

Since for each t ∈ T , xt
2 R

t
2 y

t
2 and since R2 ∈ Rs, we have x2 R2 y2. By strategy-proofness of

f when moving from (R2, R−2) to (R′
2(t), R−2), y2 = f2(R2, R−2)R2 f2(R

′
2(t), R−2) = x2. Hence,

x2 = y2. By non-bossiness of f , we have that y = f(R2, R−2) = f(R′
2(t), R−2) = x.

We can apply repeatedly the same arguments to obtain that for each k = 0, 1, . . . , n and

each preference profile R ∈ RN
s where exactly k agents have non-lexicographic preferences,

f(R) = cTTC(R). Thus, for each R ∈ RN
s , f(R) = cTTC(R).

E Two further impossibility results for strict preferences

A mechanism f : RN → X extends the cTTC mechanism from RN
l (RN

s , respectively) to RN ,

if for each R ∈ RN
l (RN

s , respectively), f(R) = cTTC(R).

The following theorem captures another impossibility result.
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Theorem 4. Let m > 1. Then, no mechanism satisfying individual rationality and strategy-

proofness extends the cTTC mechanism from lexicographic (separable) preferences to strict pref-

erences.

Proof. Without loss of generality, let m = 2. Suppose that there is a mechanism f : RN → X

that is individually rational and strategy-proof and that coincides with the cTTC mechanism

on RN
l (RN

s , respectively). Let x, y ∈ X\{e} be such that at x agents 1 and 2 swap their

endowments of types 1 and 2, i.e.,

x1 = (o12, o
2
2, o

3
1, o

4
1, . . . , o

m
1 ),

x2 = (o11, o
2
1, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, xi = oi

and at y agents 1 and 2 swap their endowments of type 1, i.e.,

y1 = (o12, o
2
1, o

3
1, o

4
1, . . . , o

m
1 ),

y2 = (o11, o
2
2, o

3
2, o

4
2, . . . , o

m
2 ),

and for each i = 3, . . . , n, yi = oi.

Obviously, x ̸= y.

Next, we define lexicographic preferences for agent 1 by listing a strict ordering of all objects.

At R1, agent 1’s type order is 1, 2, . . . ,m and the only object he prefers to one of his endowments

is the type 1 endowment of agent 2, i.e.,

R1 : o
1
2, o

1
1, o

1
3, . . . , o

1
n, o

2
1, . . . , o

2
n, o

3
1, . . . , o

3
n, o

m
1 , . . . , o

m
n

At R′
1, agent 1’s type order is 1, 2, . . . ,m and the only objects he prefers to some of his

endowments are the type 1 and 2 endowments of agent 2, i.e.,

R′
1 : o

1
2, o

1
1, o

1
3, . . . , o

1
n, o

2
2, o

2
1, o

2
3, . . . , o

2
n, o

3
1, . . . , o

3
n, o

m
1 , . . . , o

m
n .

Similarly, we define lexicographic preferences for agent 2 by listing a strict ordering of all

objects. At R2, agent 2’s type order is 1, 2, . . . ,m and the only objects he prefers to some of his

endowments are the type 1 and 2 endowments of agent 1, i.e.,

R2 : o
1
1, o

1
2, o

1
3, . . . , o

1
n, o

2
1, o

2
2, o

2
3, . . . , o

2
n, o

3
1, . . . , o

3
n, o

m
1 , . . . , o

m
n .

Next, we define lexicographic preferences for all remaining agents as follows. For each i =

3, . . . , n, agent i prefers his full endowment to all other allotments, i.e.,

for each t ∈ T, Rt
i : o

t
i, . . . .
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Finally, let R′
2 be strict and non-separable preferences for agent 2 such that agent 2 prefers

only his allotment at x to his endowment, i.e.,

R′
2 : x2, o2, . . . .

Note that (R′
1, R

′
2, RN\{1,2}) ∈ RN\RN

s . There are only two individually rational allocations at

(R′
1, R

′
2, RN\{1,2}): e and x.

Since R is a profile of lexicographic preferences, we have f(R) = cTTC(R) = y. By individual

rationality of f , f(R1, R
′
2, RN\{1,2}) = e. Hence, by individual rationality and strategy-proofness

of f , f(R′
1, R

′
2, RN\{1,2}) = e.

Since (R′
1, R2, RN\{1,2}) is a profile of lexicographic preferences, we have f(R′

1, R2, RN\{1,2}) =

cTTC(R′
1, R2, RN\{1,2}) = x. Therefore, agent 2 has an incentive to misreport R2 at

(R′
1, R

′
2, RN\{1,2}); contradicting strategy-proofness of f .

The no-trade rule (Example 2, Appendix C) is individually rational, strategy-proof, and

does not extend the cTTC mechanism from lexicographic (separable) preferences to strict pref-

erences. The following mechanism that extends cTTC from lexicographic (separable) preferences

to strict preferences is individually rational but not strategy-proof : the mechanism assigns the

cTTC allocation on RN
l (RN

s , respectively) and the endowment allocation on RN\RN
l (RN\RN

s ,

respectively). The independence of strategy-proofness is an open problem.

Lemma 5. Let m > 1. If a mechanism satisfies strategy-proofness, non-bossiness, and extends

the cTTC mechanism from lexicographic (separable) preferences to strict preferences, then it

satisfies individual rationality.

Proof. Suppose that there is a mechanism f : RN → X that is strategy-proof, non-bossy, and

that coincides with the cTTC mechanism on RN
l (RN

s , respectively). By Lemma 3 (which can

be proven for RN using the same arguments), f is monotonic.

By contradiction, assume that f is not individually rational. Thus, there exists a profile

R ∈ RN and an agent i ∈ N such that oi Pi fi(R). Without loss of generality, let i = 1.

Let x ≡ f(R). Let R̂1 ∈ R be such that agent 1 positions o1 first and x1 second, i.e.,

R̂1 : o1, x1, . . . .

For each agent j = 2, 3, . . . , n, let R̂j ∈ Rl be such that agent j positions xj first, i.e.,

for each t ∈ T, R̂t
j : x

t
j, . . . .

It is easy to see that R̂ is a monotonic transformation of R at x. Thus, by monotonicity of f ,

f(R̂) = x.

Next, let R̄1 ∈ Rl be such that

for each t ∈ T, R̄t
1 : o

t
1, x

t
1, . . . .
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Note that (R̄1, R̂−1) ∈ RN
l . Thus, f(R̄1, R̂−1) = cTTC(R̄1, R̂−1), and in particular,

f1(R̄1, R̂−1) = o1. However, then f1(R̄1, R̂−1) = o1 P̂1 x1 = f1(R̂) and agent 1 has an incen-

tive to misreport R̄1 at R̂, which contradicts with strategy-proofness of f .

Now, Theorem 4 and Lemma 5 imply the following impossibility result.

Corollary 4. Let m > 1. Then, no mechanism satisfying strategy-proofness and non-bossiness

extends the cTTC mechanism from lexicographic (separable) preferences to strict preferences.

The no-trade rule (Example 2, Appendix C) is strategy-proof and non-bossy, and does not

extend the cTTC mechanism from lexicographic (separable) preferences to strict preferences.

The independence of strategy-proofness (non-bossiness, respectively) is an open problem.
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Pápai, S. (2003). Strategyproof exchange of indivisible goods. Journal of Mathematical Eco-

nomics 39 (8), 931–959.

Pápai, S. (2007). Exchange in a general market with indivisible goods. Journal of Economic

Theory 132 (1), 208–235.

37



Peng, M., C. Wang, J. Li, H. Xiang, and V. Lau (2015). Recent advances in underlay het-

erogeneous networks: Interference control, resource allocation, and self-organization. IEEE

Communications Surveys & Tutorials 17 (2), 700–729.

Roth, A. E. (1982). Incentive compatibility in a market with indivisible goods. Economics

Letters 9 (2), 127–132.

Roth, A. E. and A. Postlewaite (1977). Weak versus strong domination in a market with

indivisible goods. Journal of Mathematical Economics 4 (2), 131–137.

Serizawa, S. (2006). Pairwise strategy-proofness and self-enforcing manipulation. Social Choice

and Welfare 26 (2), 305–331.

Shapley, L. S. and H. Scarf (1974). On cores and indivisibility. Journal of Mathematical Eco-

nomics 1 (1), 23–37.

Sikdar, S., S. Adalı, and L. Xia (2017). Mechanism design for multi-type housing markets. In

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pp. 684–690.

Svensson, L.-G. (1999). Strategy-proof allocation of indivisible goods. Social Choice and Wel-

fare 16 (4), 557–567.

Takamiya, K. (2001). Coalition strategy-proofness and monotonicity in Shapley–Scarf housing

markets. Mathematical Social Sciences 41 (2), 201–213.

Wako, J. (2005). Coalition-proof Nash allocation in a barter game with multiple indivisible

goods. Mathematical Social Sciences 49 (2), 179–199.

38


	Introduction
	The model
	Characterizing the cTTC mechanism
	Characterizing the cTTC mechanism for lexicographic preferences
	Characterizing the cTTC mechanism for separable preferences
	Impossibility results for strict preferences

	Discussion
	Auxiliary properties and results
	Proof of Theorem 1: uniqueness
	Independence of properties in Theorem 1
	Proof of strategy-proofness in Example 5

	Proof of Theorem 2: uniqueness
	Two further impossibility results for strict preferences

