Pareto-Improving Optimal Capital and Labor Taxes

Katharina Greulich† Sarolta Laczó‡ Albert Marcet§

October 2014

Abstract
We study optimal fiscal policy in a model with agents who are heterogeneous in their labor productivity and wealth, and there is an upper bound on capital taxes. We focus on Pareto-improving plans. We show that the optimal tax reform is to cut labor taxes and leave capital taxes high in the short and medium run. Only in the very long run would capital taxes be zero. For our calibration labor taxes should be low for the first eleven to twenty-six years, while capital taxes should be at their maximum. This policy ensures that all agents benefit from the tax reform and that capital grows quickly after the reform. Therefore, the long-run optimal tax mix is the opposite of the short- and medium-run tax mix. The initial labor tax cut is financed by deficits that lead to a positive long-run level of government debt, reversing the standard prediction that government accumulates savings in models with optimal capital taxes. Benefits from the tax reform are high and can be shifted entirely to capitalists or workers by varying the length of the transition.

JEL classification: E62, H21

Keywords: fiscal policy, Pareto-improving tax reform, redistribution

*We wish to thank Jordi Caballé, Begoña Domínguez, Joan M. Esteban, Andreu Mas-Colell, Michael Reiter, Sevi Rodríguez, Raffaele Rossi, Kjetil Storesletten, Jaume Ventura, Iván Werning, Philippe Weil, and Fabrizio Zilibotti for useful comments. Michael Reiter provided the fixed point subroutine used to solve the model. Greulich acknowledges support from the National Centre of Competence in Research “Financial Valuation and Risk Management” (NCCR FINRISK) and the Research Priority Program on Finance and Financial Markets of the University of Zurich. Laczó acknowledges funding from the JAE-Doc grant co-financed by the European Social Fund. Marcet acknowledges CREI, DGES, CIRIT (SGR2005-00097) and Barcelona GSE Research and the XREA network for their support.
†Swiss Re
‡Institut d’Anàlisi Econòmica (CSIC) & Barcelona GSE, Campus UAB, 08193 Bellaterra, Barcelona, Spain. Email: sarolta.laczo@iae.csic.es.
§Institut d’Anàlisi Econòmica (CSIC), ICREA, UAB, MOVE, Barcelona GSE & CEPR, Campus UAB, 08193 Bellaterra, Barcelona, Spain. Email: albert.marcet@iae.csic.es
1 Introduction

A large literature on optimal dynamic taxation concludes that long run capital taxes should be zero. This result, which originally goes back to Chamley (1986) and Judd (1985), has been very resilient to many modifications of the basic model.\(^1\)

That capital taxes should be so low is a controversial policy recommendation. Given the highly skewed distribution of wealth, it would seem that lowering capital taxes and increasing labor taxes instead will necessarily hurt less wealthy taxpayers. However, in standard models capital taxes should be zero in the long run even with heterogeneous agents, and even if the government only considers policy allocations that improve the welfare of agents with very little wealth. Chamley (1986), Judd (1985), and Atkeson, Chari, and Kehoe (1999) provide results of this kind in different settings.\(^2\) In keeping with the literature we call this the Chamley/Judd result.

One interpretation of this result has been that there is no equity-efficiency trade-off involved in lowering capital taxes. This suggests that any opposition to lower capital taxes can only be due to a lack of understanding of economics, or to a belief in myopic behavior on the part of agents, or to inefficiencies of the political system that make it impossible for the government to commit, or to some other failure of the basic model. Consequently, many economists hold the view that introducing heterogeneity in models of optimal factor taxation with infinitely-lived agents is a nuisance.\(^3\)

We consider a model with heterogeneous agents (‘workers’ and ‘capitalists’), without lump-sum transfers, with an upper bound on capital taxes below 100%, and with a focus on Pareto-improving plans. These features, first of all, create a meaningful equity-efficiency trade-off. Moreover, the restriction to Pareto-improving allocations is natural because the surprising part of the Chamley/Judd result is that long-run capital taxes should be zero even

\(^1\)The literature is very large, a fair summary would be quite long. A very incomplete summary of the literature is that in the few cases where steady state optimal capital taxes are not zero they are often small or even negative, or capital approaches zero in the long run (Straub and Werning, 2014).

\(^2\)Aiyagari (1995) shows that capital taxes should be positive in the long run due to capital overaccumulation in a model with heterogeneous agents and incomplete markets. We do not focus on this implication of heterogeneous agents for two reasons. First, because the result is tenuous: Chamley (2001) shows that depending on the stochastic form of income shocks the long-run capital tax could be negative, and Marcet, Obiols-Homs, and Weil (2007) argue that a similar result holds when introducing endogenous labor supply. Second, the result is specifically for the ‘veil of ignorance’ welfare function, and it may not hold for other welfare functions. Hence, because our aim is to study the transition, we prefer to stay within a model where zero long-run capital tax is optimal.

\(^3\)Some papers consider taxation in heterogeneous agent models with exogenous policy, we mention a few in the text. The literature on optimal policy in models with heterogeneous infinitely-lived agents includes Bassetto (2013) and Niepelt (2004), who study how taxes affect taxpayers of different wealth in a stochastic model without capital, and Werning (2007), who studies redistribution with progressive taxation.
if the government improves all agents’ welfare.4 Aside from this literature-driven motivation, it seems that a sufficiently large and angry minority can block a tax reform, or it may credibly threaten to overturn the reform in a future vote, so that in order to change the taxation status quo a sufficiently large part of the population should agree. Further, we deviate from much of the optimal policy literature in explicitly studying the entire path of optimal capital and labor taxes, and not only the steady state.5

We first show analytically that in our model optimal capital taxes are still zero in the long run. However, they will be at the upper bound for some periods, and then transit to zero in two periods. To find the length of the transition period and the effects of the tax reform on allocations and welfare, we turn to numerical methods.6 We find that redistributive concerns cause the transition to be very long: capital taxes are high for between eleven and twenty-six years (for our calibration), depending on exactly which Pareto-improving allocation is selected. This long period of high capital taxes is needed in order to raise more tax revenues from the capitalists and less from the workers. Only then all agents benefit from the tax reform. This implies that optimal factor taxation depends very much on heterogeneity. In addition, the long-run properties of optimal policies should not be used for policy recommendations, since an optimal reform calls for many years of low labor taxes and high capital taxes, the exact opposite of the long-run recommendation.

To demonstrate the effects of heterogeneity in isolation we first study a model with a completely inelastic labor supply. In this case the first best is achieved with homogeneous agents by setting capital taxes to zero in all periods. However, with heterogeneous agents capital taxes should remain at their upper bound for a very long time before they are abolished. The reason is that zero capital taxes in all periods would leave workers worse off than the status quo. Therefore, even though the planner has access to non-distortive labor taxes, she has to resort to distortive capital taxation to lower the workers’ tax burden. The resulting total welfare losses are quite large, but they are needed to ensure a Pareto improvement.

If labor supply is somewhat elastic, capital taxes should be high for eleven to twenty-six years before they are set to zero. Now we find that labor taxes should be lower than at the status quo during the transition. Lower initial labor taxes increase labor supply, thus promoting growth in the early periods. With this policy the government achieves a lower

4The recent work of Flodén (2009) studies policies that are optimal only for one agent, thus Pareto improvements are not necessarily achieved.

5Some papers have studied the transition in models of optimal policy. For example Jones, Manuelli, and Rossi (1993) study the transition in several homogeneous agent models.

6To solve the model numerically, we need to take care of some technical issues, including the fact that the heterogeneity parameters have to be solved for separately, that the frontier of equilibria may not be well-behaved, and the non-recursiveness on the solution induced by the tax limit.
welfare loss compared to the case with lump-sum transfers at the initial period. Ignoring the transition would yield very low welfare for some agents, as found in the literature. This suggests that it is important to go beyond steady state analysis in studies of optimal policy. Zero capital taxes in the long run are only Pareto optimal and Pareto improving if they go along with high capital taxes and low labor taxes during the transition. Furthermore, in light of this result, high capital taxes can be part of an optimal reform, and they are not necessarily a failure of a political system or a result of frequent voting, as some papers in the political economy literature suggest. The puzzle now would become, why are labor taxes so high?

Our results are complementary to some papers already hinting that the transition of optimal policy is very important in models of heterogeneous agents. These papers establish that large parts of the population would suffer a large utility loss if capital taxes were suddenly abolished. Relevant references are Correia (1999) (some analytic results), Domeij and Heathcote (2004) (a model with incomplete markets), Conesa and Krueger (2006) (with overlapping generations), Flodén (2009) (policy designed optimally for one of the agents), and Garcia-Milà, Marcet, and Ventura (2010) (a model without uncertainty and calibration according to wage/wealth ratios). The results of these contributions stand in stark contrast to Lucas (1990), who showed that the welfare of a representative agent would increase if capital taxes were abolished immediately and all tax revenue were obtained by taxing only labor. Hence, while designing the transition of capital and labor taxes optimally may not be very important with homogeneous agents, with heterogeneous agents there is indeed an important equity-efficiency trade-off. Our results are further in line with the literature on gradualism of political reforms, which has been at the center of some policy debates. The very long period of high capital taxes we find can be seen as a gradual reform designed to ensure that all agents’ welfare improves.

In our main model government debt is positive in the long run. This is because the government initially runs a deficit to finance the initial drop in labor taxes. The behavior of long-run debt is, therefore, the opposite from the standard case under capital taxation, where the government often accumulates savings. In the face of the recently renewed interest in studying the determinants of the optimal level of debt, this shows that a positive level of

8 For example, the desirable speed of transition to market economies of formerly planned economies has been extensively discussed both in policy and academic circles. Within this literature, closest to our approach is Lau, Qian, and Roland (2001) who show a gradual reform that improves all agents’ welfare.

9 See Faraglia, Marcet, and Scott (2010) and the references therein.
government debt can be a by-product of an optimal reform.

The main results are robust to various parameter changes. We also explore if progressive taxation might achieve the proper redistribution to ensure Pareto improvements and avoid the distortions associated with high capital taxes. Finally, we also investigate numerically the time consistency of our solutions. We find that the tax reform is time consistent if it can only be overturned by consensus, therefore, heterogeneity builds in some time consistency.\footnote{This is a similar result to the one obtained analytically by Armenter (2004) for a simpler model.}

The paper is organized as follows: In Section 2 we lay out our baseline model and discuss further the motivation for our assumptions. Section 3 discusses some properties of the models obtained analytically, including a proof that capital taxes are zero in steady state and about the form of the transition. Our numerical results are presented in Section 4. Section 5 concludes.

\section{The Model}

We consider an economy with two heterogeneous agents, discrete time, capital accumulation, and a Ramsey policy-maker, but without uncertainty. Our emphasis changes in four aspects relative to most of the Ramsey taxation literature.

i) We study the whole path for taxes, including the transition.

ii) We preclude agent-specific redistributive lump-sum transfers. It is well known that the Chamley/Judd result survives even in this case.\footnote{To our knowledge the first complete proof that capital taxes are zero in the long run even in the absence of agent-specific lump sum redistribution is in Section B1 of Chari and Kehoe (1999) also described in Atkeson, Chari, and Kehoe (1999). Chamley (1986) discusses the case of heterogeneous agents by considering a government with a welfare function that weighs all agents linearly, this implicitly assumes there are redistributive lump-sum transfers. Judd (1985) considered a model where an agent has only capital income and another agent has only wage income, so the distorting taxes in that paper are, in a way, agent-specific.} This assumption seems reasonable in a literature that has focused on the effects of distortive taxation, and because most tax codes (and constitutions) stipulate that all individuals are equal in front of the law.

iii) We search for allocations that improve the welfare all groups in the population, i.e., we study plans that are Pareto improvements.

iv) We impose an upper bound on capital taxes each period. Chamley (1986) and Atkeson, Chari, and Kehoe (1999) assume an upper bound of 100\% for capital taxes in all periods. Many other papers in the optimal taxation literature tend to simplify things by assuming a bound only in the initial period. Optimal policies under these constraints imply that capital taxes should be very high in the first few periods, much higher than current actual capital taxes. This is a similar result to the one obtained analytically by Armenter (2004) for a simpler model.}
capital taxes which, by all measures, are already high. The initial tax hike recommended by these models could have devastating effects on investment in the real world if there is partial credibility of government policy, or if agents form their expectations by learning from past experience.\footnote{Lucas (1990) offered a similar reasoning to motivate his study of a tax reform that abolishes capital taxes immediately. Of course, one could infer from our discussion that issues such as credibility and learning should be introduced explicitly in the analysis, instead of indirectly with the tax limit. Doing so would imply deviating very much from Chamley’s model, but in this paper we prefer to stay as close as possible to that model, in order to understand the reason for our results. The time consistency literature deals, in a way, with the credibility issue. An analysis of capital taxes under learning can be found in Giannitsarou (2006).} To avoid this tax hike in the initial periods we use a capital tax ceiling lower than 100%. In particular, in all of our computational exercises we fix this ceiling to the status-quo capital tax. Alternatively, this bound can be interpreted as a value that avoids massive capital flight in an open economy with partial mobility of capital.

In the following we present our model formally. We refer to Garcia-Milà, Marcet, and Ventura (2010) for some details on how to characterize competitive equilibria. For details on formulating Ramsey equilibria and the primal approach in general, see Chari and Kehoe (1999) or Ljungqvist and Sargent (2012).

2.1 The environment

There are two consumers \(j = 1, 2 \) with utility \(\sum_{t=0}^{\infty} \beta^t [u(c_{j,t}) + v(l_{j,t})] \) where \(c \) is consumption and \(l \) is labor of each agent each period. We assume \(u_c > 0, \ v_l < 0 \) and usual Inada and concavity conditions. Agents differ in their initial wealth \(k_{j,-1} \) and their labor productivity \(\phi_j \). Agent \(j \) obtains income in period \(t \) from renting his/her capital at the rental price \(r_t \) and from selling his/her labor for a wage \(w_t \phi_j \). Agents pay taxes at rates \(\tau^l_t \) on labor income and \(\tau^k_t \) on capital income net of depreciation allowances. Therefore, the period-\(t \) budget constraint of agent \(j \) is given by

\[
c_{j,t} + k_{j,t} = w_t \phi_j l_{j,t} (1 - \tau^l_t) + k_{j,t-1} \left[1 + (r_t - \delta)(1 - \tau^k_t) \right], \quad \text{for } j = 1, 2.
\]

Firms maximize profits and have a production function \(F(k_{t-1}, e_t) \), where \(k \) is total capital and \(e \) is total efficiency units of labor. \(F() \) is concave and increasing in both arguments, has constant returns to scale, \(F_k (k, e) \to 0 \) as \(k \to \infty \), \(F_{kk} (k, e) < 0 \) for all \(e > 0 \), and \(F_{ee} (k, e) < 0 \) for all \(k > 0 \), where a lower index denotes the derivative with respect to the corresponding variable.

The government chooses capital and labor taxes, consumes \(g \) in every period, and has the standard budget constraint. It saves in capital and has initial capital \(k^g_{-1} \). The government
can get in debt, that is, \(k^g \) can be negative. Ponzi schemes for consumers and the government are ruled out.

We focus on the case with two groups, and normalize the mass of each group to \(\frac{1}{2} \). Then the market clearing conditions are

\[
\frac{1}{2} \sum_{j=1}^{2} \phi_j l_{j,t} = e_t, \tag{2}
\]
\[
k_t = k_t^g + \frac{1}{2} \sum_{j=1}^{2} k_{j,t},
\]
\[
\frac{1}{2} \sum_{j=1}^{2} c_{j,t} + g + k_t - (1 - \delta) k_{t-1} = F(k_{t-1}, e_t). \tag{3}
\]

2.2 Conditions of competitive equilibria

The equilibrium concept is standard: consumers and firms take prices and taxes as given, they maximize their utility and profits, respectively, markets clear, and the budget constraint of the government is satisfied.

Combining the first-order conditions (FOCs) with respect to consumption and labor for consumer \(j \) yields

\[
u' (c_{j,t}) = \beta u' (c_{j,t+1}) (1 + (r_{t+1} - \delta) (1 - \tau_{t+1}^k)), \quad \forall t, \tag{4}
\]
\[-\frac{v' (l_{j,t})}{u' (c_{j,t})} = w_t (1 - \tau^l_l) \phi_j, \quad \forall t, \tag{5}
\]
the Euler equation and the consumption-labor optimality condition, respectively, for all \(j \).

We assume that the current utility function is

\[
u (c) = \frac{c^{1-\sigma_c}}{1 - \sigma_c} \quad \text{and} \quad v (l) = -\omega \frac{l^{1+\sigma_l}}{1 + \sigma_l}, \tag{6}
\]
where \(\omega \) is the relative utility weight of hours, \(\sigma_c \) is the coefficient of relative risk aversion, and \(\sigma_l \) is the inverse of the (constant) Frisch elasticity of labor supply. In this case the above FOCs imply

\[
\frac{c_{2,t}}{c_{1,t}} = \lambda \quad \text{and} \quad \frac{l_{2,t}}{l_{1,t}} = \left(\frac{\phi_2}{\phi_1} \right)^{\frac{1}{\sigma_l}} \frac{1}{\sigma_l}, \quad \forall t, \tag{7}
\]
for some \(\lambda \) constant through time.

Using equation (4) the budget constraints of consumer \(j \) for all \(t = 0, 1, \ldots \) can be sum-
marized in the present value constraint\(^\text{13}\)

\[
\sum_{t=0}^{\infty} \beta^t \frac{u'(c_{j,t})}{u'(c_{j,0})} (c_{j,t} - w_t \phi_j l_{j,t} (1 - \tau^j_t)) = k_{j,-1} (1 + (r_0 - \delta) (1 - \tau^j_0)) , \text{ for } j = 1, 2. \quad (8)
\]

Then, using (5) and rearranging, for consumer 1 we have

\[
\sum_{t=0}^{\infty} \beta^t (u'(c_{1,t}) c_{1,t} + v'(l_{1,t}) l_{1,t}) = u'(c_{1,0}) k_{1,-1} (1 + (r_0 - \delta) (1 - \tau^k_0)) . \quad (9)
\]

Using (4), (5), and (7), we can write the present value constraint of consumer 2 as

\[
\sum_{t=0}^{\infty} \beta^t \left(u'(c_{1,t}) \lambda c_{1,t} + \frac{\phi_2}{\phi_1} v'(l_{1,t}) f(\lambda, l_{1,t}) \right) = u'(c_{1,0}) k_{2,-1} (1 + (r_0 - \delta) (1 - \tau^k_0)) , \quad (10)
\]

where

\[
f(\lambda, l_{1,t}) \equiv \lambda^{-\frac{\phi_2}{\phi_1}} \left(\frac{\phi_2}{\phi_1} \right) \frac{l_{1,t}}{\lambda_1}, \quad (11)
\]

which gives \(l_{2,t}\) for each possible value of the endogenous variables \(\lambda\) and \(l_{1,t}\) from (7). One can show that necessary and sufficient conditions for a sequence \(\{c_{1,t}, k_t, l_{1,t}\}\) and a constant \(\lambda\) to be a competitive equilibrium are feasibility (3) and (9) and (10). In other words, as long as these conditions hold capital and labor taxes can be found that ensure that all first-order conditions of agents hold. Note that the presence of heterogeneous agents implies that the ratio \(\lambda\) has to be found optimally subject to the constraints (9) and (10).

Firms behave in a competitive fashion, hence factor prices equal marginal products, i.e.,

\[
\begin{align*}
 r_t &= F_k(k_{t-1}, e_t) \quad \text{and} \quad w_t = F_e(k_{t-1}, e_t).
\end{align*}
\]

Using these conditions we can eliminate factor prices from the characterization of competitive equilibria.

Once we have solved for the optimal allocations, taxes can be found from (4) and (5). Consumption and labor of agent 2 are found from (7), and individual capital is backed out from the budget constraint period by period. Finally, factor prices are found using the firms’ optimality conditions.

2.3 The policy problem

We assume that the planner chooses Pareto-optimal allocations. A standard argument justifies that this is equivalent to assuming that the planner maximizes the utility of, say, agent 1, \(^{13}\)Walras’ law guarantees that the budget constraint of the government is implied by the above equations plus feasibility so it can be ignored.
subject to the constraint that the utility of agent 2 has a minimum value of U^2, i.e.,

$$\sum_{t=0}^{\infty} \beta^t [u(c_{2,t}) + v(l_{2,t})] \geq U^2,$$

(12)

where U^2 is restricted so that the set of feasible competitive equilibria satisfying this constraint is non-empty. Varying the value of the minimum utility U^2 along all possible utilities that can be achieved in equilibrium for agent 2, we can trace out the whole set of Pareto-efficient allocations.

We will concentrate our attention on allocations that are Pareto improving relative to a certain status quo. Let U_{SQ}^j be the status quo utility obtained by agent j, achieved with some taxation scheme that is already in place. The Pareto-improving allocations can be found by considering only minimum utility values for consumer 2, U^2, such that $U^2 \geq U_{SQ}^2$ and that the planner’s objective at the maximum satisfies

$$\sum_{t=0}^{\infty} \beta^t [u(c_{1,t}^*) + v(l_{1,t}^*)] \geq U_{SQ}^1,$$

(13)

where * denotes the optimized value of each variable for a given U^2. Hereafter we refer to these Pareto optimal and Pareto-improving plans as ‘POPI’ allocations. Proposition 2 below will provide a way to compute all the utility values on the frontier and to select the POPI allocations.

Finally, we introduce a tax limit, denoted $\tilde{\tau}$, and impose $\tau_t^k \leq \tilde{\tau}$ for all $t = 0, 1, ..., i.e., that capital taxes never go above a certain constant $\tilde{\tau}$ exogenously given. Combining this limit with the Euler equation of agent 1, it is easy to see that the tax limit is satisfied in equilibrium if and only if

$$u'(c_{1,t}) \geq \beta u'(c_{1,t+1}) (1 + (r_{t+1} - \delta) (1 - \tilde{\tau})) , \forall t > 0,$$

$$\tau_0^k \leq \tilde{\tau}.$$

(14)

(15)

The first equation ensures that the actual capital tax τ_t^k for $t = 1, 2, ...$ that is implied by (4) satisfies the limit, and it allows us to use the primal approach, where taxes at $t = 1, 2, ...$ do not appear explicitly in the government’s problem.

We look for a Ramsey equilibrium where the government chooses an optimal sequence of tax rates and deficits, maximizes utility of agent 1 subject to the constraint that taxes and prices have to be compatible with competitive equilibrium (CE) and subject to the above

\footnote{The status-quo utility, in general, depends on the distribution of capital at period -1, but we leave this dependence implicit.}
additional constraints. As is standard in the Ramsey taxation literature, we assume that the
government has full credibility, i.e., full commitment to the announced policies, and both the
government and the agents have rational expectations.

The government/planner solves

\[
\max_{\tau^0, \lambda, \{c_t, k_t, l_t\}} \sum_{t=0}^{\infty} \beta^t [u(c_{1,t}) + v(l_{1,t})]
\]

s.t. \[
\sum_{t=0}^{\infty} \beta^t [u(\lambda c_{1,t}) + v(f(\lambda, l_{1,t}))] \geq U^2
\]

and feasibility (3) for all \(t\), the implementability constraints (9) and (10) (for period 0 only)
and the tax limits, (14) and (15). We have used (7) and (11) to substitute for \(c_2\) and \(l_2\)
to obtain (16). \(U^2\) has to satisfy the requirements discussed above to achieve a Pareto
improvement. Notice that a special feature of this problem is that the constant \(\lambda\) has to be
determined as a part of welfare maximization, therefore it appears as an argument in the
optimization problem.

Let \(\psi\) be the Lagrange multiplier of the minimum utility constraint (16), let \(\Delta_1\) and \(\Delta_2\)
be the multipliers of (9) and (10), respectively, and let \(\gamma_t\) be the Lagrange multiplier of (14).
The Lagrangian for the government’s problem is

\[
\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left\{ u(c_{1,t}) + v(l_{1,t}) + \psi [u(\lambda c_{1,t}) + v(f(\lambda, l_{1,t}))]
\right. \\
+ \Delta_1 [u'(c_{1,t}) c_{1,t} + v'(l_{1,t}) l_{1,t}] \\
+ \Delta_2 \left[u'(c_{1,t}) \lambda c_{1,t} + \frac{\phi_2}{\phi_1} v'(l_{1,t}) f(\lambda, l_{1,t}) \right] \\
+ \gamma_t [u'(c_{1,t}) - \beta u'(c_{1,t+1}) (1 + (r_{t+1} - \delta)(1 - \bar{\tau}))] \\
- \mu_t \left[F(k_{t-1}, e_t) + (1 - \delta) k_{t-1} - k_t - \frac{1 + \lambda}{2} c_{1,t} - g \right] \right\} - \psi U^2 - \mathbf{W}
\]

where \(\mathbf{W} = u'(c_{1,0}) (\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1}) (1 + (r_0 - \delta)(1 - \bar{\tau}^k))\). Further, \(\gamma_t \geq 0\) and \(\psi \geq 0\),
with complementary slackness conditions.

The first line of this Lagrangian has the usual interpretation: finding a Pareto-efficient
allocation amounts to maximizing a welfare function where the planner weights linearly the
utility of the two agents. The weight of agent 1 is normalized to one and the weight of agent 2
is the Lagrange multiplier of the minimum utility constraint. However, it is important that
this \(\psi\) is not chosen arbitrarily in our setup. Instead it has to satisfy the Pareto-improving
constraints. The next two lines correspond to the budget constraints of the consumers. The
fourth line ensures that \(\tau^k_t \leq \bar{\tau}\) for all \(t = 1, 2, \ldots\). The last line is the feasibility constraint.
The term \(\mathbf{W}\) collects the period-0 terms in the budget constraints of the consumers.
As is often the case in optimal taxation models, the feasible set of sequences for the planner is non-convex. This means that we need to be careful about necessity and sufficiency of first-order conditions. We will be explicit about these issues in Section 3.2.

The tax limit is a forward-looking constraint, therefore standard dynamic programming does not apply. Using a promised-utility approach would be complicated because of the appearance of a state variable (marginal utility of consumption) that has to be bounded to stay in the set of feasible marginal utilities, and since there is also a natural state variable \(k \), characterizing this set is quite difficult. The Lagrangian approach of Marcet and Marimon (2011) is easier to use in these circumstances. Appendix A shows the recursive Lagrangian and the first-order conditions with respect to consumption, labor, and capital. In the rest of the section we comment on features of the remaining first-order conditions which differ from other papers on dynamic taxation.

Since the relative consumption of agents, \(\lambda \), is a choice variable, we need to set the derivative of \(L \) with respect to \(\lambda \) equal to zero. This gives

\[
\sum_{t=0}^{\infty} \beta^t \left\{ \psi [u'(\lambda c_{1,t}) c_{1,t} + v'(f(\lambda, l_{1,t})) f_\lambda (\lambda, l_{1,t})] \\
+ \Delta_2 \left[u'(c_{1,t}) c_{1,t} + \frac{\phi_2}{\phi_1} v'(l_{1,t}) f_\lambda (\lambda, l_{1,t}) \right] \\
- \gamma_{t-1} u'(c_{1,t}) F_{ke} (k_{t-1}, e_t) \frac{\phi_2}{2} f_\lambda (\lambda, l_{1,t}) (1 - \tilde{\tau}) - \frac{\mu_t}{2} (c_{1,t} - F_e (k_{t-1}, e_t) \phi_2 f_\lambda (\lambda, l_{1,t})) \right\} \\
- u'(c_{1,0}) (\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1}) F_{ke} (k_{-1}, e_0) \frac{\phi_2}{2} f_\lambda (\lambda, l_{1,0}) (1 - \tau_0^k) = 0.
\]

The fact that \(\lambda \) has to be chosen is a reflection of the fact that the government can vary the ratio of consumptions of the agents by varying the total tax burden of labor and capital in discounted present value.

The multipliers have to satisfy the complementary slackness conditions. As for \(\psi \), the multiplier of (16),

\[
\text{either } \psi > 0 \text{ and } \sum_{t=0}^{\infty} \beta^t [u(c_{2,t}) + v(l_{2,t})] = U_2^2, \\
\text{or } \psi = 0 \text{ and } \sum_{t=0}^{\infty} \beta^t [u(c_{2,t}) + v(l_{2,t})] \geq U_2^2.
\]

In other words, the minimum utility constraint may or may not be binding. In the first case, the Lagrangian amounts to maximizing the weighted sum of utilities of agents 1 and 2 with weight 1 and \(\psi \), respectively. If the minimum utility constraint is not binding, the planner
gives zero weight to agent 2. The latter case would only occur in models without frictions if the planner would be willing to give a very low utility to agent 2, but we will see that it occurs in our case even if the lower bound \(U^2 \) is the status-quo utility. This is because even if \(\psi = 0 \) agent 2 will be consuming due to the fact that the allocations are determined in equilibrium and the budget constraint of agent 2 has to be satisfied, insuring agent 2 some revenue for any policy action.

Similarly, for \(\gamma_t \) for each \(t \) we have that

\[
either \quad \gamma_t > 0 \quad \text{and} \quad u'(c_{1,t}) = \beta u'(c_{1,t+1}) (1 + (r_{t+1} - \delta) (1 - \tilde{\tau})) ,
\]

\[
or \quad \gamma_t = 0 \quad \text{and} \quad u'(c_{1,t}) \geq \beta u'(c_{1,t+1}) (1 + (r_{t+1} - \delta) (1 - \tilde{\tau})) .
\]

It turns out that the \(\Delta_j \)'s may be positive or negative, since the corresponding present-value budget constraints have to be satisfied as equality. This becomes clear by looking at the following interpretation. With two agents the marginal utility cost of distortive taxation is \(\frac{\partial c}{\partial \tilde{\tau}_0} = u'(c_{1,0}) (\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1}) (r_0 - \delta) \). Hence,

\[
\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1} \geq 0,
\]

with the inequality being strict as long as any taxes are raised after the initial period. This allows for one of the \(\Delta_j \)'s being negative, which will indeed be the case whenever the constraints on redistribution that are imposed by the competitive-equilibrium conditions and the Pareto-improvement requirement are sufficiently severe. To see this, consider a slightly modified model in which the social planner is allowed to redistribute initial wealth between agents by means of lump-sum transfers \(T^j \), \(j = 1, 2 \), such that \(T^1 = -T^2 \). All this modification does to the Lagrangian is to change the implementability constraints, in particular, the term \(u'(c_{1,0}) (\Delta_1 - \Delta_2) T^1 \) is added to \(W \). Now, the derivative of the Lagrangian with respect to the lump-sum transfer between agents is \(\frac{\partial c}{\partial T^1} = u'(c_{1,0}) (\Delta_1 - \Delta_2) \). For any given \(T^1 \), and in particular for \(T^1 = 0 \) as in our baseline model, this expression is a measure of the marginal utility cost of the transfer not being optimal. If the planner were free to choose \(T^1 \) optimally, we would have \(\Delta_1 = \Delta_2 > 0 \). If the planner would like to redistribute more towards agent 2, then \(\Delta_1 - \Delta_2 > 0 \), and vice versa. If the transfer is much too low (high), the derivative will be large in absolute value and \(\Delta_2 (\Delta_1) \) will be negative. In sum, while the weighted sum of the multipliers on the present-value budget constraints is related to the cost of distortive taxation, their difference indicates the cost of not being able to redistribute using lump-sum transfers. Hence, these multipliers capture in a simple way the two forces which drive the solution to our model away from the first best: the absence of lump-sum taxes and of agent-specific lump-sum transfers.
For the government’s problem to be well defined we should ensure that the set of feasible equilibria is non-empty. This is guaranteed, for example, by the existence of a status quo equilibrium, i.e., if \(\bar{\tau} \) is larger or equal to the status-quo capital tax, and if \(U^2 \) is close to the status-quo utility.

3 Characterization of equilibria

Here we describe some analytical results.

3.1 Qualitative behavior of capital taxes

To the best of our knowledge there is no previous proof of zero long-run capital taxes which fully applies to our model. To obtain this result we assume the government has free disposal of \(g \). More precisely, we assume that the government can purchase consumption good in excess of \(g \) and dump the excess. It is easy to see that this is equivalent to assuming that the feasibility constraint (3) has to hold as weak inequality instead of equality.

Proposition 1. Assume free disposal of \(g \), log utility of consumption (\(\sigma_c = 1 \), \(c > 0 \) at the steady state, \(F(k, 0) = F(0, e) = 0 \), and \(0 < \bar{\tau} < 1 \). Then the optimal capital tax rate jumps from the tax limit to zero in two periods. Formally, there is a finite \(N \) such that

\[
\tau^k_t = \begin{cases}
\bar{\tau}, & \forall t \leq N, \\
0, & \forall t \geq N + 2.
\end{cases}
\]

Proof. We proceed in two steps. First, we show that it is not possible for the tax limit to be binding forever in the optimal allocation. Then we show that capital taxes go from the limit to zero in two periods.

Now we prove that the tax limit cannot be binding in all periods. Let variables without a lower index \(t \) denote steady-state values. First of all, notice that in the log case the first-order condition (FOC) with respect to consumption for \(t > 0 \) (see Appendix A) becomes

\[
c_t^{-1} (1 + \psi \lambda) - c_t^{-2} [\gamma_t - \gamma_{t-1} (1 + (F_k (k, e) - \delta) (1 - \bar{\tau}))] = \mu_t \frac{1 + \lambda}{2}
\]

\[15\]The results in Chari and Kehoe (1999) and Atkeson, Chari, and Kehoe (1999) are similar, they also prove the tax limit cannot be binding forever and that the transition takes two periods. But the results in those papers are not directly applicable here. They do not consider a tax limit and heterogeneity at the same time, and, more importantly, their proof is for the case of a capital tax limit of 100%. For this particular bound if the tax limit were binding forever feasibility would be violated. In our case, where \(\bar{\tau} \) is the status quo tax the same line of argument cannot be used, the economy could stay at the status quo forever. This is why a more-involved argument is needed.
If indeed the solution had $\tau_t^k = \bar{\tau}$ for all t, then (4) would be

$$\beta [1 + (F_k(k,e) - \delta)(1 - \bar{\tau})] = 1.$$

Evaluating (19) at steady state and plugging the last equation into the one above we have

$$A - c_1^{-2} \frac{\gamma_t - \gamma_{t-1}}{\beta} = \mu_t \frac{1 + \lambda}{2},$$

(20)

where $A = c_1^{-1}(1 + \psi \lambda)$. Notice that we are only imposing steady state on the variables, not on the multipliers. This is the right way to proceed, because real variables have natural bounds and existence of a steady state can be expected. On the other hand, the multipliers should not have bounds, otherwise there is no sense in which the Lagrangian is guaranteed to give a maximum, and a steady state in the variables could be compatible with multipliers that go to infinity.

The FOC for labor for $t > 0$ (see Appendix A) at steady state is

$$-\omega_1^\sigma \left[1 + \frac{\psi}{\lambda} \phi_2 f_l (\lambda, l_1) + \left(\Delta_1 + \Delta_2 \frac{\phi_2}{\phi_1} f_l (\lambda, l_1) \right) (1 + \sigma_l) \right] - \gamma_{t-1} c_1^{-1} F_{ke} (k, e) \frac{1}{2} \left(\phi_1 + \phi_2 f_l (\lambda, l_1) \right) (1 - \bar{\tau}) = -F_e (k, e) \frac{1}{2} \left(\phi_1 + \phi_2 f_l (\lambda, l_1) \right) \mu_t$$

(21)

Collecting the terms which do not depend on the multipliers γ or μ we have

$$B + C \gamma_{t-1} = \mu_t,$$

(22)

where

$$B = \omega_1^\sigma \left[1 + \frac{\psi}{\lambda} \phi_2 f_l (\lambda, l_1) + \left(\Delta_1 + \Delta_2 \frac{\phi_2}{\phi_1} f_l (\lambda, l_1) \right) (1 + \sigma_l) \right] \frac{F_e (k, e) \frac{1}{2} \left(\phi_1 + \phi_2 f_l (\lambda, l_1) \right)}{F_{ke} (k, e)}$$

$$C = c_1^{-1} \frac{F_{ke} (k, e)}{F_e (k, e)} (1 - \bar{\tau})$$

Notice that the terms A, B, and C do not depend on the multipliers γ or μ. Note also that given our assumption that the steady state involves $c_1 > 0$, assumptions $F(k,0) = F(0,e) = 0$ imply that $k > 0$ and $e > 0$. This implies that $0 < F_e(k,e) < \infty$. The constant returns to scale assumption and concavity imply that $F_{ke}(k,e)k = -F_{ee}(k,e)e > 0$. All these observations imply that

$$\frac{F_{ke}(k,e)}{F_e(k,e)} > 0,$$

(23)

Further, again given $c_1 > 0$ and in turn $k > 0$, μ has to be finite and hence constant at the steady state.
Now, let us rearrange (20) as
\[\gamma_t = \frac{\gamma_{t-1}}{\beta} + c_t^2 A - c_t^2 \mu \frac{1 + \lambda}{2}. \]

Since $1/\beta > 0$, this is an unstable difference equation for all $\gamma \neq 0$. We know that $\gamma_t \geq 0$, $\forall t$, therefore unless $\gamma = 0$ at the steady state, it converges to infinity. But then from (22) μ would also have to be infinite, a contradiction. Therefore, the tax limit cannot be binding in all periods, there has to be a period t where $\tau^k_t < \tilde{\tau}$.

Now we show that capital taxes go from the limit to zero in two periods. The previous argument implies that there is a finite $N + 1$ which is the first period where the tax limit is not binding, so that $\tau^k_{N+1} < \tilde{\tau}$ and $\tau^k_t = \tilde{\tau}$ for all $t \leq N$ in the optimum. Given N, consider the following modification to the baseline model. Assume that instead of the uniform tax limit in all periods we had considered a model where we impose
\[\tau^k_t \leq \tilde{\tau}, \forall t \neq N + 1, \]
but τ^k_{N+1} is unconstrained. Let us call this ‘modified model 1’ (MM1). It is clear that the solution to this problem is equal to the solution of the baseline model, because we have just relaxed a tax limit that was not binding in the optimum of the baseline model. Let us keep this fact in store for a while.

Now consider a second modified model, that we dub MM2, where we impose
\[\tau^k_t \leq \tilde{\tau}, \forall t \leq N, \]
but τ^k_t is unconstrained for all $t > N$. Let us denote with a ^ the solution to MM2. Clearly, the first-order conditions for this model are the same as for the baseline model except that
\[\hat{\gamma}_t = 0, \forall t \geq N. \tag{24} \]

Notice that γ_t is the multiplier associated with the constraint on τ^k_{t+1}, so that τ^k_{N+1} being the first unconstrained tax means γ_N is the first multiplier that must be 0.

Combining (24) with (19), implies\(^{16}\)
\[\hat{c}_{1,t}^{-1} \left(1 + \psi \hat{\lambda} \right) = \hat{\mu}_t \frac{1 + \hat{\lambda}}{2}, \forall t \geq N + 1. \tag{25} \]

\(^{16}\)Notice that in order to obtain the following equation we absolutely need log-utility. This equation would not hold for different risk aversions, because the term u'' in the FOC for consumption would not disappear, if capital is not exactly at steady state. Therefore, log utility is necessary in order obtain the proof. At this writing we are not sure why previous results on the transition of capital taxes with an upper bound did not incorporate log utility as an assumption.
This last equation does not hold for \(t = N \) because \(\hat{\gamma}_{N-1} \neq 0 \) appears in (19). Plugging (24) in the FOC with respect to capital (see Appendix A) we get

\[
\hat{\mu}_t = \beta \hat{\mu}_{t+1} \left(1 - \delta + F_k \left(\hat{k}_t, \hat{e}_{t+1} \right) \right), \quad \forall t \geq N,
\]

and using (25) we have

\[
\hat{c}_{1,t}^{-1} = \beta \hat{c}_{1,t+1}^{-1} \left(1 - \delta + F_k \left(\hat{k}_t, \hat{e}_{t+1} \right) \right), \quad \forall t \geq N + 1.
\]

Comparing this equation with the Euler equation of the consumer, we conclude that

\[
\hat{\tau}_t^k = 0, \quad \forall t \geq N + 2.
\]

Therefore, the properties for taxes mentioned in the statement of the proposition hold for the model MM2.

Since the optimal solution for MM2 is also feasible in MM1, even though the latter is more restrictive, because \(\tau_t^k \) for \(t > N + 1 \) are (potentially) constrained, \(\hat{\tau}_t^k \) is also the optimal tax in MM1, \(\forall t \). This proves that in MM1

\[
\tau_t^k = 0, \quad \forall t \geq N + 1.
\]

Since we already argued that the solution to MM1 was equal to the solution of the baseline model, this completes the proof.\(^{17}\)

3.2 The frontier of the equilibrium set

We now study the frontier of equilibrium utilities. Formally, let \(\mathcal{F} \) be the frontier of the set

\[
\left\{ (U_1, U_2) \in R^2 : U_i = \sum_{t=0}^{\infty} \beta^t \left[u(c_{i,t}) + v(l_{i,t}) \right] \text{ for some } \{(c_{i,t}, l_{i,t})_{i=1,2}, k_t \} \text{ a CE} \right\}.
\]

In the standard case without distortions and a concave utility function, it is well known that \(\mathcal{F} \) coincides with the Pareto frontier and it defines \(U_1 \) as a decreasing function of \(U_2 \), or vice versa. In that case all these allocations can be traced by optimizing welfare functions which give different weights to each agent. Instead, given the distortions introduced by proportional taxes, we cannot be sure that the set (27) is convex and if considering a welfare function allows us to trace the frontier of equilibria. Further, now the frontier of equilibria may not coincide

\(^{17}\)Notice that for the proof to work we do need to consider the two modified models MM1 and MM2. If we tried to compare MM2 to the solution of the baseline model directly, we would not be able to rule out that \(\tau_{N+1}^k > \bar{\tau} \). The solution to MM2 would then be unfeasible in the baseline model and could not be compared to it.
with the set of Pareto optimal allocations. There are indeed models where the frontier of
equilibria has a convex part that cannot be found by maximizing welfare functions. However,
we can still find sufficient conditions guaranteeing that by maximizing a welfare function in
the standard way we obtain points on the frontier, and we can be confident that some of
these points are Pareto optimal while others are not. Furthermore, we can give sufficient
conditions for finding all Pareto optimal allocations.

We consider another two minor modifications of the baseline model. In particular, first,
we replace the minimum utility constraint (12) by an equality constraint
\[
\sum_{t=0}^{\infty} \beta^t \left[u(c_{2,t}) + v(l_{2,t}) \right] = U^2, \tag{28}
\]
where U^2 is restricted so that the set of feasible competitive equilibria satisfying this con-
straint is non-empty. Let us call this model MM3. Second, MM4 consists of solving, for a
given $\psi \in [-\infty, \infty]$,
\[
\max \sum_{t=0}^{\infty} \beta^t \left\{ u(c_{1,t}) + v(l_{1,t}) + \psi [u(\lambda c_{1,t}) + v(f(\lambda,l_{1,t}))] \right\}, \tag{29}
\]
subject to all CE constraints and the tax limit. Notice that we allow for negative ψ’s and
that we consider the case $\psi = \pm \infty$ as a convention to denote the case where agent 1 or 2
receive no weight.

We show that MM4 can be used to trace a large part of the frontier \mathcal{F} and the Pareto
optimal allocations within it. Given $\psi \in [-\infty, \infty]$, let $U_i(\psi)$ be the utility of consumer
i = 1, 2 in the solution to MM4. We need two assumptions.

A1 A solution to MM4 exists for all $\psi \in [-\infty, \infty]$. Also, $U_i(\psi)$ is well defined for i = 1, 2.

That a solution exists is guaranteed by standard requirements such as that the set of equilibria
is non-empty and that the utility functions are bounded. That $U_i(\psi)$ is well defined amounts
to assuming that each ψ gives a unique utility level for each agent or, equivalently, that \mathcal{F}
does not have a linear part.

A2 $U_2(\cdot)$ is monotone decreasing and invertible for $\psi \in [0, \infty]$.

Proposition 2. Assume A1.

1. Given $\psi \in [-\infty, \infty]$, the solution of MM4 also solves MM3 for $U_2 = U_2(\psi)$.

17
2. Given $\psi \in [-\infty, \infty]$, the solution of MM4 defines a point on the frontier:

$$(U_1(\psi), U_2(\psi)) \in F.$$

3. Given $\psi \geq 0$, the solution to MM4 is Pareto optimal.

4. Assume, in addition, A2. Then, every Pareto-optimal allocation is also the solution of MM4 for some $\psi \geq 0$.

Proof. Fix $\psi \in [\infty, \infty]$. To show part 1, let $U_1^{MM3}(U_2)$ be the value of the maximum of MM3. By definition, $U_1(\psi) + \psi U_2(\psi)$ is the value of the maximum of MM4. Since the solution to MM3 is feasible in MM4 we have

$$U_1(\psi) + \psi U_2(\psi) \geq U_1^{MM3}(U_2(\psi)) + \psi U_2(\psi)$$

so that $U_1(\psi) \geq U_1^{MM3}(U_2(\psi))$. Also, the solution to MM4 is feasible in MM3 for $U_2 = U_2(\psi)$, therefore $U_1(\psi) \leq U_1^{MM3}(U_2(\psi))$. This shows that $U_1(\psi) = U_1^{MM3}(U_2(\psi))$, i.e., that the maxima of MM3 and MM4 coincide when $U_2 = U_2(\psi)$

Part 2: for any $\psi \in [-\infty, \infty]$ we just need to find pairs of utilities which do not belong to the set (27) but are arbitrarily close to $(U_1(\psi), U_2(\psi))$. Consider any $\varepsilon > 0$. For $\psi \geq 0$ the pair of utilities $(U_1(\psi) + \varepsilon, U_2(\psi) + \varepsilon)$ is outside the set (27), otherwise it would have been chosen over the optimum in MM4 since it achieves a higher value of the objective, and can be made arbitrarily close by considering arbitrarily small ε. Therefore $(U_1(\psi), U_2(\psi))$ is on the frontier for $\psi \geq 0$. For $\psi \leq 0$ a similar argument shows that points such as $(U_1(\psi) + \varepsilon, U_2(\psi) - \varepsilon)$ are outside the feasible set and can be made arbitrarily close to $(U_1(\psi), U_2(\psi))$.

Part 3: if there were a feasible combination of utilities $(\tilde{U}_1, \tilde{U}_2)$ that Pareto dominates $(U_1(\psi), U_2(\psi))$ the optimum of MM4 would not be attained at $(U_1(\psi), U_2(\psi))$.

For part 4, note that if (\hat{U}_1, \hat{U}_2) is a Pareto-optimal allocation, assumption A2 guarantees that there is an $\hat{\psi}$ such that $\hat{U}_2 = U_2(\hat{\psi})$. This and the fact that (\hat{U}_1, \hat{U}_2) is Pareto optimal means that $\hat{U}_1 \geq U_1(\hat{\psi})$, hence $\hat{U}_1 + \hat{\psi} \hat{U}_2 \geq U_1(\hat{\psi}) + \hat{\psi} U_2(\hat{\psi})$. But the fact that the solution to MM4 is attained at $(U_1(\psi), U_2(\psi))$ means that the reverse inequality also holds, i.e., $\hat{U}_1 + \hat{\psi} \hat{U}_2 \geq U_1(\hat{\psi}) + \hat{\psi} U_2(\hat{\psi})$. Hence, the maximum of MM4 for $\hat{\psi}$ is attained at (\hat{U}_1, \hat{U}_2).

Proposition 2 implies that by varying ψ from plus to minus infinity and maximizing (29), we can trace out points on the frontier of equilibria F and all points $(U_1(\psi), U_2(\psi))$ for
positive \(\psi \) are Pareto optimal. Furthermore, under A2 we are sure that we will find all Pareto-optimal allocations in this fashion. The points in \(\mathcal{F} \) corresponding to negative \(\psi \) solve MM3 for \(U^2 = U_2(\psi) \) but these equilibria are not Pareto optimal since, as indicated by the negative Lagrange multiplier \(\psi \), the first agent's utility could be increased in MM3 while increasing \(U^2 \) as well.

More points on the frontier can be found if the consumers switch places in the objective function (29), that is, if \(\psi \) multiplies the utility of agent 1. Then, by varying \(\psi \) (now the weight of agent 1) from zero to negative infinity again, we could find points on the equilibrium frontier that are not Pareto optimal and that are obtained by forcing the planner to give a certain utility to agent 1.

There is a caveat: assumptions A1 and A2 need to be checked. Since the feasible set is non-convex the only way to check A1 is to check that there is only one solution to MM4. This can be done numerically by searching for more solutions to the first-order conditions as in scores of papers where the maximum is found by searching for all critical points and, if more than one is found, the values of the objective function are compared. We can explore numerically if A2 holds by recording all utilities for a fine grid of \(\psi \)'s and checking that \(U_2(\psi) \) is increasing. In this way we can be confident that we have found all Pareto-optimal competitive equilibria and that we traced out a “large part” of the frontier \(\mathcal{F} \). We did this check for all the examples shown below.

The Pareto-optimal and Pareto-improving (POPI) plans can be found as those points of \(\mathcal{F} \) which have a non-negative \(\psi \) and provide utilities which are larger than the status quo utilities. Note that non-optimal points on \(\mathcal{F} \), i.e., points where \(\psi < 0 \), may also be Pareto improving relative to the status quo. In this case, \(\mathcal{F} \) has an increasing part, where any POPI plan strictly improves the utility of one of the agents and it is not possible to shift all the gains to the other agent in a Pareto-optimal way. All these concepts will be illustrated in the model we consider in Section 4.2, in which the frontier features such a part.

4 Numerical Results

We now present and discuss our numerical results. Details on our computational strategy can be found in Appendix B. In the next subsection we discuss how we calibrate the model. Afterwards, we first analyze the case in which labor supply is fixed. In a homogenous-agent model with fixed labor supply, the Ramsey planner would set all capital taxes equal to zero and tax only labor, and hence achieve the first best. The tax limits would not be binding in the optimum. As we will see, even with fixed labor supply, with heterogeneous agents the
POPI policy is likely to involve a long transition with high capital taxes. This is because the planner needs to redistribute wealth in favor of the worker in order to ensure that his utility increases relative to the status quo. The planner is willing to lose efficiency and have high capital taxes for many periods in order to achieve a Pareto-improving allocation. The fixed labor supply model demonstrates clearly that in a heterogeneous-agent model the need to redistribute in a Pareto-improving way is what drives early capital taxes up.

Second, in Section 4.3, we study optimal policy in an economy with flexible labor supply. This case is not only studied for generality but also because it reveals additional features of optimal plans. In this case, as is well known, even in the homogeneous-agent model the planner would like to have high capital taxes for some initial periods. This compounds with the redistributive effect, and it turns out that the planner sets high capital taxes and low labor taxes for many years after the reform starts. This induces high labor supply and faster capital accumulation in the early periods, because the return to capital increases even though capital taxes are still high. We also contrast these results with those from an extension of our model in which lump-sum transfers are permitted to gain intuition for the forces at work.

4.1 Calibration

All parameters except for the tax rates remain the same during the policy experiments. We calibrate the model at a yearly frequency. An overview of our parameter choices is provided in Table 4.1.

We calibrate our parameters using the private sector’s first-order conditions at steady state, taking as given average effective tax rates and government debt, to match United States macro and micro data for the period 2001-2010. The macro variables are computed using the data provided by Trabandt and Uhlig (2012), who collected data from the OECD and other sources.\(^{18}\) We use the effective tax rates they have computed, in particular, \(\tau^h = 0.214\) and \(\tau^k = 0.401\). The average level of federal government debt held by the public was 66.8 percent of GDP. Note that the choice of tax rates and government indebtedness in the status quo matters for several reasons. First of all, they influence the status-quo steady-state (and hence initial) capital stock. Secondly, status-quo utilities depend on these variable, and thus restrict the scope for Pareto improvements. Thirdly, we assume that during the reform the capital tax rate can never increase above its initial level so we set \(\tilde{\tau}\) equal to the status-quo capital income tax rate, i.e., \(\tilde{\tau} = 0.401\).

We set some preference parameters a priori. The utility function is as stated in Section 2.

\(^{18}\)https://sites.google.com/site/mathiastrabandt/home/downloads/LafferNberDataMatlabCode.zip
Table 1: Parameter values of the baseline economy

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference parameters</td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.96</td>
</tr>
<tr>
<td>σ_c</td>
<td>1</td>
</tr>
<tr>
<td>σ_l</td>
<td>3</td>
</tr>
<tr>
<td>ω</td>
<td>221.1</td>
</tr>
<tr>
<td>Heterogeneity Parameters</td>
<td></td>
</tr>
<tr>
<td>ϕ_c/ϕ_w</td>
<td>1.1</td>
</tr>
<tr>
<td>$k_{c,-1}$</td>
<td>3.831</td>
</tr>
<tr>
<td>$k_{w,-1}$</td>
<td>-0.611</td>
</tr>
<tr>
<td>Production parameters</td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.394</td>
</tr>
<tr>
<td>δ</td>
<td>0.074</td>
</tr>
<tr>
<td>Public sector</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.094</td>
</tr>
<tr>
<td>$k_{g,-1}$</td>
<td>-0.315</td>
</tr>
<tr>
<td>τ^l</td>
<td>0.214</td>
</tr>
<tr>
<td>τ^k</td>
<td>0.401</td>
</tr>
</tbody>
</table>

We set the annual discount factor to the most commonly used value, $\beta = 0.96$. We choose $\sigma_c = 1$ in keeping with a large part of the literature on taxation and in order to use Proposition 1. The choice of $\sigma_l = 3$ is for the case of an elastic supply of labor, which prevents labor supply from greatly differing across groups with different wealth.\footnote{See Garcia-Milà, Marcet, and Ventura (2010) for a discussion of the tradeoffs in choosing σ_l.} Note that this implies a lower Frisch elasticity of labor supply than many applications of real business cycles but is in line with micro estimates.

We assume that the production function is Cobb-Douglas with a capital elasticity of output of $\alpha = 0.394$ to match the labor income share. There is no productivity growth.

Our two types of agents are heterogeneous with respect to both their labor efficiency ϕ^j and their initial wealth $k_{j,-1}$. We follow Garcia-Milà, Marcet, and Ventura (2010) and use data from the Panel Study of Income Dynamics (PSID). We split the population into two groups: (i) those with above the median wage-wealth ratio, whom we call “workers,” indexed w, and (ii) those with below the median wage-wealth ratio, called “capitalists,” indexed c. Capitalists are richer relative to their earnings potential, however, both types of agents work and save. See the discussion in Garcia-Milà, Marcet, and Ventura (2010) on the relevance of heterogeneity in the wage/wealth ratio when studying optimal proportional labor and capital income taxation. We choose $\phi_c/\phi_w = 1.10$ to match the ratio of labor earnings and $\lambda = c_w/c_c = 0.54$, based on the calculations of Garcia-Milà, Marcet, and Ventura (2010).

Finally, we find ω, δ, g, $k_{g,-1}$, and the initial wealth of each group in the model, $k_{c,-1}$ and $k_{w,-1}$, consistent with the steady state given the status-quo tax rates, using (i) the
consumption-labor FOC of capitalists and that average hours should match the fraction of time worked for the working age population, $h = 0.245,^{20}$ (ii) that capital held by the agents and the government has to equal steady-state aggregate capital, (iii) that g over output has to equal government consumption over GDP, (iv) that k_{2-1}^g over output has to match the public assets-GDP ratio from the data, and (v) the present-value budget constraint of both groups.

4.2 Pareto-optimal and Pareto-improving plans with fixed labor supply

In general, the set of POPI plans deviates from the first best for two reasons. One is the standard reason in models of factor taxation: the need to raise tax revenue discourages the supply of capital and/or labor. The second reason is the lack of non-distortive means of redistribution between types of agents. Since our paper is mostly about the latter, we first analyze a case in which only the redistributive effect is present. To do so, we assume fixed labor supply. In a model of homogeneous agents, the policy-maker would abolish capital taxes immediately and collect all revenues free of distortions from taxes on labor, and thus implement the first-best allocation. In a model of heterogeneous agents, if the government could stipulate agent-specific lump-sum transfers at time zero (with $T^w = -T^c$, as introduced at the end of Section 2), the problem of how to redistribute wealth would be resolved. Then the first-best policy could be achieved for any distribution of welfare gains. But in the case of interest where lump-sum redistribution is not possible, deviations from the first-best policy with zero capital taxes at all times are necessary for distributive reasons.

We assume a fixed labor supply equal to one third. This amounts to taking $\sigma_l \to \infty$ with the scaling parameter ω appropriately adjusted so that labor supply stays at 0.245. All other parameters are as in Table 4.1.

In Figure 1 we compare the set of POPI plans to the first best in terms of welfare gains.\(^{21}\) First of all, note that A2 is satisfied and that by lowering ψ the utility of agent 2 goes down, therefore Proposition 2 can be used to trace out the Pareto-optimal and additional points on the frontier. The line labeled ‘first best PI’ represents those allocations where agent-specific lump-sum transfers are available and which are Pareto improving. Clearly, the absence of transfers significantly reduces the scope for Pareto improvements. All POPI plans depicted

\(^{20}\) Hours to be allocated between work and leisure: 13.64.

\(^{21}\) In all the figures reporting results on welfare, the welfare gains for each agent are measured as the percentage, permanent increase in status-quo consumption which would give the agent the same utility as the optimal tax reform. Therefore, the origin of the graph represents status-quo utility, and the positive orthant contains Pareto-improving allocations.
in the solid line are inferior to the first best. Why? It turns out that the first-best plans that are Pareto improvements upon the status quo would all involve positive transfers to the worker, \(T^w > 0 \). Absent these transfers, the immediate abolition of capital taxes would severely hurt the worker as has been shown previously in a number of contributions.\(^{22}\) This is because capital taxes in the status quo are disproportionately borne by capitalists, and when they are abolished, labor taxes have to rise in order for the government to meet its budget constraint. This increase in labor taxes due to an immediate reform has a strong redistributive effect and, from the perspective of the worker, it would overcompensate the welfare gains arising from increased efficiency. The only thing the planner can do to make the abolition of capital taxes palatable for the worker is to keep capital taxes as high as possible for a long time (the \(N \) periods of Proposition 1) before setting capital taxes to zero from time \(N + 2 \) onwards.

Capital taxes have to be at the upper bound for 12 years (in the POPI plan where the worker gains nothing) to 24 years (when the worker gains the most possible). Some revenue is then still raised from capital taxes so that labor taxes need not provide all revenue. This implies a cost in efficiency, because the economy remains distorted for a long time, while it would be non-distorted if lump-sum redistribution were feasible. This is why POPI plans are second best even though taxation would be entirely non-distortive in a homogeneous-agent model or if lump-sum redistribution were available.\(^{23}\)

The absence of a lump-sum redistributive instrument not only drives the set of POPI plans away from the first best, it also limits the degree to which welfare gains can be shifted towards the worker. This can be seen from Figure 1. By forcing the capitalist onto a lower utility level than the lowest point of the POPI curve, the planner would also harm the worker.

It is worthwhile noting that even though the utility loss relative to the first best is small if we only focus on equilibria which leave the worker indifferent and give all the benefits of the reform to the capitalist (i.e., if we focus on points where the frontiers cross the vertical axis of Figure 1) the utility loss is very large if we try to give some of the benefits to the worker. The most we can give to the worker is a 1.08% improvement, which is about one-eighth of the most the worker could gain with lump-sum redistribution. There is little to be gained from cutting capital taxes if the worker must enjoy most of the benefits.

Finally, the optimal policy under the ‘veil of ignorance,’ when \(\psi = 1 \). This policy gives

\(^{23}\)Notice that in the case of a fixed labor supply the evolution of labor taxes is undetermined, all that matters is that the net present value of labor taxes balances the government’s budget constraint given the optimal path for capital taxes found.
utilities \((U^c, U^w) = (2.87, 0.48)\).

4.3 Main model

We now return to our main model for the rest of the analysis, featuring an elastic labor supply. In particular, we set \(\sigma_l = 3\), which means that the Frisch elasticity of labor supply is \(1/3\).

4.3.1 Welfare frontier and capital tax

Figure 2 reports the set of POPI plans in terms of welfare gains. Again, we contrast our main model with the case with optimal agent-specific transfers, \(T^w = -T^c\). Note, though, that in the case with transfers the first best is no longer attained, because positive capital and/or labor taxes are needed to raise tax revenue to finance government spending.

Again, the absence of redistributive transfers clearly constitutes an extra constraint on the feasible set, and the welfare gains are smaller for Ramsey POPI allocations. However, the limits to redistribution are less severe here than with exogenous labor supply. The equilibrium frontier \(F\) (the solid line) is now decreasing in the range of Pareto-superior allocations, hence it is now feasible to leave either the worker or the capitalist indifferent relative to the status quo without violating Pareto optimality. In addition, the total welfare loss relative to the case with transfers is now much lower. If we focus, for example, on points that give equal gain to both agents (the points where each frontier crosses the 45° line), we see that it is roughly 1.3% for both agents in the POPI allocation, only slightly below the 1.5% to be gained by both agents with lump-sum redistribution. We conjecture, though, that for sufficiently high \(\sigma_l\) and correspondingly close-to-inelastic labor supply, the picture would start resembling Figure 1.

As the distribution of welfare gains varies along the frontier of POPI plans, so do the corresponding capital tax schedule and relative consumption of agents. Qualitatively the properties of capital taxes over time are always the same: capital taxes stay at their upper bound for all but the last period of the transition and then they transit to zero with at most one intermittent period, as we know from Proposition 1. A typical time path for capital taxes is drawn in Figure 3.

The length of the transition increases as welfare gains are shifted towards the worker. This is illustrated in the first panel of Figure 4 showing the duration of the transition in the vertical axis for each POPI allocation indexed by the welfare gain of the worker on the horizontal axis. We see that the number of periods before capital taxes drop to zero increases.
from eleven to twenty-six years as we increase the welfare gain of the worker from zero (i.e., leaving the worker indifferent with status quo) to 1.8%, which leaves the capitalist indifferent with status quo. Along with the duration of the transition, the present value share of capital taxes in government revenues increases from 12.7% to 21.7%, as the second panel in Figure 4 reveals.24 This is the clue to why a longer period of high capital taxes is beneficial for the worker: the worker contributes to the public coffers primarily through labor taxes, which means that his burden in the long run stands to increase through the reform, while the capitalist’s long-run burden decreases. The earlier capital taxes are suppressed, the more revenue has to be raised from labor taxes and the bigger is the relative tax burden of the worker.

The final panel in Figure 4 depicts ψ, the multiplier on the minimum utility constraint for the worker, and λ, the ratio of the worker’s consumption to the capitalist’s in equilibrium. We put these two graphs in the same picture because in the standard case in dynamic models, under log utility, without distorting taxes and with complete markets, we would have $\psi = \lambda$. More precisely, this equality holds in a first best situation, without distortive taxation or distributive conflict ($\Delta_1 = \Delta_2 = 0$), and if the upper bound on capital taxes never binds ($\gamma_t = 0$, $\forall t$). In our second-best world, by contrast, as we increase the welfare of the worker, the marginal cost of doing so (as measured by ψ) explodes, while his consumption share increases only mildly. In fact, it always remains very close to its value in the status quo, which is 0.54. This shows that it is very difficult to alter the ratio of consumption (λ) even if the planner cares very differently about the agents, given that it has access only to proportional taxes and agent-specific lump-sum taxes are not available.

If optimal lump-sum transfers were possible, the graphs in Figure 4 would look very different. We find that for all Pareto optimal allocations capital taxes would be suppressed after 9 years, and the share of capital taxes would always be 10.3%. The multiplier on the worker’s utility constraint ψ would increase very little with U^w, while λ would rise much more than without the transfer. This is because in this case the redistribution can be achieved with agent-specific lump-sum taxes independently of the fact that the planner lowers quickly capital taxes to achieve aggregate efficiency. The policies and the path of the economy would hardly depend on the distribution of the gains from reform. Shifting welfare gains and consumption between agents would be much easier, as indicated by the behavior of ψ and λ.25

24For comparison, the share of capital taxes in revenues is about 37.1% in the status quo.
25Note that even with redistributive lump-sum taxes we do not obtain $\psi = \lambda$, which only holds in optimal allocations when there is no distortionary taxation.
Focusing on Pareto-improving allocations means that the unit of interest is the utility that each agent achieves through various tax reforms. Under this view, the weight ψ is just a Lagrange multiplier determined in equilibrium, and it measures the cost of enforcing the minimum utility constraint. The fact that ψ has to increase so much to achieve a small redistribution is a reflection of the difficulties that the planner faces in redistributing wealth from one agent to the other when only capital or labor taxes are available.

Another way of looking at ψ is as the relative weight that the worker receives in the welfare function of the government. This suggests an interpretation of ψ as a measure of the bias of the social planner in favor of the workers. In particular, if one were to focus on the optimal allocation under the ‘veil of ignorance,’ the relevant policy would be the one corresponding to $\psi = 1$, since both types of agents are equally abundant in the economy. This also corresponds to a model of probabilistic voting where both agents are equally influential. Many recent papers on dynamic optimal policy with heterogeneous agents use this welfare function. As can be seen Figure 2, the optimal policy for $\psi = 1$ corresponds to a welfare gain by the worker of about 1.10%. By chance, the optimal reform under the ‘veil of ignorance’ happens to be Pareto improving. It gives more benefit to the capitalist (1.35%) than the worker. For this welfare function capital taxes are zero after 17 years.

In Appendix C we show that the main features described here are robust to changes in parameter values. In particular, we consider measurement issues for the relevant tax rates and consumption inequality at the status quo, we recalibrate and solve our baseline model considering both a lower and a higher value for each the three data moments.

4.3.2 The time path of the economy

The evolution of capital, aggregate labor, consumptions, the capital and labor tax rates, and the government deficit are pictured in Figure 5. First, note that qualitatively the paths are very similar across the set of POPI plans. The horizontal shifts in the graphs occur because the more a plan benefits the worker, the longer capital taxes remain at their initial level. The kinks in the paths of labor taxes and government deficit occur precisely in the intermediate period when capital taxes transit from their maximum to zero.

The most surprising observation is, perhaps, that labor taxes should be initially lowered, and they should remain low for a long time. The reason for this behavior is the following: the planner wants to frontload capital taxes for the usual reason described at length in the literature that early capital taxes imply taxing capital that is already in place.26 Therefore,

26For example, Jones, Manuelli, and Rossi (1993) describe in detail this issue in several models with homogeneous agents.
it is optimal to keep capital taxes at the upper limit in the first few periods and then let them go to zero. With such high capital taxes investors would not invest much. However, the government has another instrument which can be used to boost output and capital accumulation in the early periods. The government can lower labor taxes, inducing an increase in labor supply, causing the return on capital to go up, increasing investment in the initial periods, and achieving a faster convergence to the optimal long-run capital-labor ratio compatible with zero capital taxes. The upper right panel in Figure 5 shows that aggregate labor supply is very high in the early periods.\footnote{Note that the accumulation of capital accelerates around the period when capital taxes become zero, as can be seen by comparing the kink in the graph for labor taxes with the capital accumulation graph. Therefore, eventually the zero capital tax is the one promoting growth and helping the economy converge to the new steady state. Absent this backloading of labor taxes, capital would initially grow only to the extent that the expectation of low capital taxes in the distant future raises incentives to save early on. In this case capital accumulation would be much slower, as in the fixed labor supply case of Section 4.2. Therefore, low early labor taxes are an instrument to induce investment in the early periods in the case of elastic labor supply.}

A similar result of low early labor taxes has been found in models of homogeneous agents.\footnote{The same pattern can be observed in our model if optimal transfers are allowed. We have computed that in the case with agent-specific lump-sum transfers, the period of low labor taxes would be much shorter, about 5-6 years, matching the lower duration of the transition to zero capital taxes. However, implementing this policy without lump-sum transfers would leave the workers worse than the status quo. Redistributive concerns lengthen the transition three or four times, as described in the previous paragraph. It is interesting that the redistributive effect and the effect of promoting growth go in the same direction: they both induce the planner to set low initial labor taxes. This explains why with flexible labor supply the POPI frontier is closer to the frontier with optimal transfers, as shown in Figure 2, than it was with fixed labor supply. With elastic labor supply the desire to boost investment early on is not in conflict with the redistribution objective.}

A somewhat surprising pattern which emerges from the figures is that the long-run labor tax rate is higher for the policy that favors the worker. This may seem paradoxical, because the worker is interested in low labor taxes. Note, though, that even though the long-run labor tax rate is higher if the worker is favored, the initial cut is even larger for these policies,\footnote{It is interesting that the redistributive effect and the effect of promoting growth go in the same direction: they both induce the planner to set low initial labor taxes. This explains why with flexible labor supply the POPI frontier is closer to the frontier with optimal transfers, as shown in Figure 2, than it was with fixed labor supply. With elastic labor supply the desire to boost investment early on is not in conflict with the redistribution objective.}

\footnote{For example, Section III of Jones, Manuelli, and Rossi (1993) shows a model where labor taxes should be very negative and capital taxes should be very high in the first period only.}
so that the share of labor taxes in the total present value of government revenues is lower for policies that favor more the worker, as the second panel of Figure 4 shows. This suggests that the long-run labor tax rate is high for two reasons. First, when capital taxation is abandoned late, the initial boost to capital accumulation comes mainly from extremely low initial labor taxes. That is, the backloading of labor taxes is strongest in these cases. Second, long-run labor supply is lower the later capital taxes are suppressed, while the gross wage is always the same.29

Since government expenditures are constant, the low initial labor taxes translate into government deficits. Only as labor taxes rise and output grows the government budget turns into surplus. Once capital taxes are suppressed and revenues fall again, the government deficit quickly reaches its long-run value, which can be positive or negative depending on whether during the transition the government accumulated wealth or not. We can see from Figure 5 that most POPI policies imply that the government runs a primary surplus in the long run. This implies that the government is in debt in the long run, because the primary surplus is needed to pay the interest on debt. Therefore, for most POPI tax reforms low taxes in the initial periods generate a positive level of long-run government debt.

This feature of the model is quite different from that of Chamley, where the government accumulated savings in the early periods to lower the labor tax bill in the long run. Here, the early drop in labor taxes is financed in part with long-run government debt, showing that one possible reason for government debt is to finance the initial stages of a reform.

\section*{4.4 Extentions}

Now we explore several variations of the model to consider issues of progressive taxation, political sustainability of equilibrium, and time consistency.

\subsection*{4.4.1 Progressive taxes}

Given that we set out to analyze the consequences of distributive concerns for optimal tax policy, it might strike the reader as very restrictive to allow proportional factor taxation only. After all, one of the prime instruments of redistribution in the real world is progressive taxation, so it is natural to ask if allowing for a progressive tax code would solve the redistributive concerns and cause the economy to be closer to the first best. We therefore now consider an extension of our model that allows for non-proportional taxes in a simple way.

29Since the long-run real return on capital is determined by the rates of time preference and depreciation and the production function is Cobb-Douglas, the long-run capital-labor ratio and wage are independent of the policy, as long as capital taxes are zero eventually.
We assume that the planner can choose a lump-sum payment D that is paid in period zero uniformly across all agents. Following Werning (2007), under complete markets this is equivalent to a fixed deductible from the tax base in each period. A positive D means progressive taxation. Introducing this in the model implies that we need to add $u'(c_{1,0}) [\Delta_1 + \Delta_2] D$ to the W-term in equation (17). We then let the planner maximize over D additionally.

We find that if we restrict our attention to non-negative D (progressive taxation), the optimal choice is to set $D = 0$. Therefore, the government will choose not to use this progressive instrument. The reason for this result is the following: there are two forces at work in the determination of the optimal D. On the one hand, redistributive concerns would advise the government to choose a positive D, since capitalists are richer. But a negative D is equivalent to a lump-sum tax, and it allows to raise revenue in a distortion-free manner. In the standard case of a representative agent model, where only this second force is present, the first best can be achieved by choose a negative D big enough (in absolute value) to raise all government revenue ever needed. In our model with heterogeneous agents it turns out that the second force is stronger.

How can a negative D be Pareto improving? The government now redistributes by choosing very negative labor taxes for many periods. In fact, the present value of revenues from labor taxes is not only negative but even bigger in absolute value than the revenue from capital taxes. The transition is 6 and 25 years at the two extremes of the POPI frontier. Welfare gains are larger than in the case with optimal transfers: capitalists can gain maximum 5.0 percent and workers 3.7 percent in welfare-equivalent consumption units.

This optimal tax scheme (negative D and negative labor taxes) is Pareto improving only because we did not consider agents of different wealth within each group of agents in our calibration. In the real world some agents have a high wage/wealth ratio who are rich (say, some young stockbrokers) and agents with a low wage/wealth ratio who are poor (say, some farmers in economically depressed areas). We calibrated according to wage/wealth ratios, because, following Garcia-Milà, Marcet, and Ventura (2010), this is appropriate when only proportional taxes are allowed, but once progressive taxation is considered, the total income of the agent is also relevant. Therefore, a careful study of progressive taxation should introduce total income in the calibration. In that case the optimal scheme described above would unlikely be Pareto improving. This is left for future research. However, the results in this subsection show that progressive taxation may have difficulties in solving the redistribution problem.
4.4.2 The evolution of wealth and welfare and time consistency

One might conjecture that the welfare of workers and capitalists drifts apart over time, with capitalists profiting from the abolition of capital taxes and workers suffering from high labor taxes in the long run. It might seem that such a scenario would render the tax reform politically unsustainable. We now study this issue, first by exploring the evolution of welfare and wealth and then more formally by addressing issues of time consistency.

The time paths of agents’ welfare and wealth are plotted in Figure 6. Welfare increases along with the accumulation of capital, and, contrary to the conjecture, both agents’ welfare evolves more or less in lock step. The reason is that, by the competitive equilibrium conditions (7), both relative consumption and relative leisure are roughly constant over time. Therefore, it is not the case that workers will lose dramatically when capital taxes finally drop to zero.

This is an implication of the permanent income hypothesis. Agents’ income net of taxes varies through time, so agents will save or dissave in order to smooth consumption and hours. The smooth time path of welfare is made possible by a less smooth path of individual wealth. Since the workers’ main contribution to the public coffers is due in later periods when labor taxes are high, and in the early years of the new policy they benefit from extremely low labor taxes, they accumulate wealth to provide for the higher tax burden later on. The capitalists’ tax burden, by contrast, tends to decrease over time, since initial capital taxes are very high and they are later suppressed. By deferring wealth accumulation until their tax burden drops, capitalists can afford a smoother consumption profile.

The fact that welfare of both types increases over time in a similar fashion suggests that the solution is, in some sense, politically sustainable. We can study if the solution we have found is time consistent more formally by performing some numerical checks.\(^{30}\) In particular, we study whether the planner would want to reoptimize if the new plan, just as the initial plan, has to be Pareto improving.

We assume that the optimal plan is followed for \(M\) periods and then the planner reoptimizes taking \(k_{g,M-1}, k_{w,M-1}, k_{c,M-1},\) and \(\tau^k_M\) as given. We then check whether the reoptimized solution differs from the remaining path under the original solution when consensus is required.\(^{31}\) That is, a reoptimization takes place only if a Pareto-improving allocation can be found relative to the agents’ continuation utilities at the period of reoptimization.

From our numerical experiments it seems impossible to make one agent strictly better

\(^{30}\) The literature on time consistency in models with heterogenous agents is not very large. One exception is Armenter (2004).

\(^{31}\) Here, unlike in period zero, government may have issued bonds during the first \(M\) periods so \(k_{g,M-1}\) may be non-zero.
off without hurting the other, so that reoptimizing with consensus always leads to the con-
firmation of the original plan in terms of taxes and allocations. Only the time-invariant
multipliers ψ, Δ_1, and Δ_2 change. The time-variant multipliers μ_t and γ_t are rescaled by
a factor $1 + \tilde{\psi}$, where the tilde indicates the reoptimized solution. Moreover, we have the
relationship $\gamma_{M-1} = \frac{1 + \psi}{1 + \tilde{\psi}} \left(\tilde{\Delta}_1 k_{1,M-1} + \tilde{\Delta}_2 k_{2,M-1} \right)$. Inspection of the first-order conditions
shows that the remainder of the original optimal plan satisfies the first-order conditions of
the reoptimization problem, as long as these relationships between the multipliers hold and
$\tilde{\psi}$ and the Δ_j’s are appropriately chosen. Interestingly, $\tilde{\psi}$ always turns out to be smaller
than ψ. For instance, in the case of $\psi = 1$ and reoptimization in $M = 5$, the continuation
utilities are respected if $\psi = 0.603$. Hence, the influence of the worker on the solution under
consensus reform has to be lower at the point of reoptimization for the original solution to
be time consistent.

This suggests that in order to sustain the tax reform it is not necessary to write the
reform as part of a constitution that cannot ever be changed at any cost. It is enough to
require that the constitution can only be changed under wide consensus for the tax reform
to be sustainable.32

5 Conclusion

We find that there is, most definitely, an equity-efficiency trade-off in the determination of
capital and labor taxes. Capital taxes should be zero in the long run, but this is an optimal
Pareto-improving policy only if capital taxes are very high, and labor taxes very low, for a
very long time after the reform starts. The government typically accumulates debt in the long
run in order to finance the initial cut in labor taxes. Lower initial labor taxes are necessary
for two reasons: first, to redistribute wealth in favor of workers in order to ensure that they
also gain from the reform, and second, to boost investment in the initial periods. These
features of the optimal policy remain in the special case where the planner has a welfare
function which weights all agents equally, as if under the ‘veil of ignorance.’

Many of our results are numerical, for a given calibration of heterogeneity according to
wage/wealth ratios. The results are robust to many variations in parameter values and even
to the introduction of progressive taxation. If labor supply is perfectly inelastic, it is very
costly to make the workers enjoy significant benefits from the capital tax cut. The solution
is time consistent if consensus is required at the time of reoptimization, suggesting that the
tax reform is credible if it can only be overturned when all agents agree.

32This result is reminiscent of the one found by Armenter (2004) in a different model.
We find that issues of redistribution are crucial in designing optimal policies involving capital and labor taxes, even though the Chamley/Judd result survives with heterogeneous agents. Therefore, research on these issues should be encouraged, both from an empirical and a theoretical point of view. One avenue for research is to study other policy instruments which may be used to compensate the workers for the elimination of capital taxes. For example, certain types of government spending or other tax cuts could play this role. More empirical work on the relevant aspects of heterogeneity so that issues of progressivity can be addressed carefully is certainly needed. The transition in our model is very long. Less-than-full credibility and less-than-fully-rational expectations might render this policy not very effective in practice. Introducing issues of partial credibility, time consistency, learning about expectations, and political economy would therefore be of interest and might influence the picture on what an optimal policy should do.
References

Appendices

A First-order conditions of the policy-maker’s problem

Using the derivations in Section 2, the Lagrangian of the policy-maker’s problem in recursive form is

\[\mathcal{L} = \sum_{t=0}^{\infty} \beta^t \left\{ u(c_{1,t}) + v(l_{1,t}) + \psi [u(\lambda c_{1,t}) + v(f(\lambda, l_{1,t}))] \right. \\
\left. + \Delta_1 [u'(c_{1,t}) c_{1,t} + v'(l_{1,t}) l_{1,t}] + \Delta_2 \left[u'(c_{1,t}) \lambda c_{1,t} + \frac{\phi_2}{\phi_1} v'(l_{1,t}) f(\lambda, l_{1,t}) \right] \right. \\
\left. + \gamma_t u'(c_{1,t}) - \gamma_t u'(c_{1,t}) (1 + (r_t - \delta)(1 - \bar{\tau})) \right. \\
\left. + \mu_t \left[\beta_F(k_{t-1}, e_t) + (1 - \delta) k_{t-1} - k_t - \frac{1 + \lambda}{2} c_{1,t} - g \right] \right) - \psi U^2 \\
\left. - u'(c_{1,0}) (\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1}) (1 + (r_0 - \delta)(1 - \bar{\tau}^k)) \right) , \]

with \(\psi \geq 0 \) and \(\gamma_t \geq 0 \), with the usual complementary slackness conditions, and \(\gamma_{-1} = 0 \). The first-order conditions for the Lagrangian are:

- for consumption at \(t > 0 \):

 \[u'(c_{1,t}) + \psi \lambda u'(\lambda c_{1,t}) + (\Delta_1 + \lambda \Delta_2) [u'(c_{1,t}) + u''(c_{1,t}) c_{1,t}] \]
 \[+ \gamma_t u''(c_{1,t}) - \gamma_{t-1} u''(c_{1,t}) (1 + (r_t - \delta)(1 - \bar{\tau})) = \mu_t \frac{1 + \lambda}{2} \]

- for consumption at \(t = 0 \):

 \[u'(c_{1,0}) + \psi \lambda u'(\lambda c_{1,0}) + (\Delta_1 + \lambda \Delta_2) [u'(c_{1,0}) + u''(c_{1,0}) c_{1,0}] \]
 \[+ \gamma_0 u''(c_{1,0}) - u''(c_{1,0}) (\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1}) (1 + (r_0 - \delta)(1 - \bar{\tau}^k)) = \mu_0 \frac{1 + \lambda}{2} \]

- for labor at \(t > 0 \), noting that \(r_t = F_k(k_{t-1}, e_t) = F_k(k_{t-1}, \frac{\phi_1}{\phi_1 + \phi_2 f(\lambda, l_{1,t})}) \):

 \[v'(l_{1,t}) + \psi v'(f(\lambda, l_{1,t})) f_t(\lambda, l_{1,t}) \]
 \[+ \Delta_1 [v'(l_{1,t}) + v''(l_{1,t}) l_{1,t}] + \Delta_2 \frac{\phi_2}{\phi_1} [v'(l_{1,t}) f_t(\lambda, l_{1,t}) + v''(l_{1,t}) f(\lambda, l_{1,t})] \]
 \[- \gamma_{t-1} u'(c_{1,t}) F_{ke}(k_{t-1}, e_t) \frac{1}{2} (\phi_1 + \phi_2 f_t(\lambda, l_{1,t})) (1 - \bar{\tau}) \]
 \[= -F_e(k_{t-1}, e_t) \frac{1}{2} (\phi_1 + \phi_2 f_t(\lambda, l_{1,t})) \mu_t \]
• for labor at $t = 0$:

$$v'(l_{1,0}) + \psi v'(f(\lambda, l_{1,0})) f_1(\lambda, l_{1,0})$$

$$+ \Delta_1[v'(l_{1,0}) + v''(l_{1,0}) l_{1,0}] + \Delta_2 \frac{\phi_2}{\phi_1} [v'(l_{1,0}) f_1(\lambda, l_{1,0}) + v''(l_{1,0}) f(\lambda, l_{1,0})]$$

$$- u'(c_{1,0}) (\Delta_1 k_{1,-1} + \Delta_2 k_{2,-1}) F_{ke}(k_{-1}, e_0) \frac{1}{2} (\phi_1 + \phi_2 f_1(\lambda, l_{1,0})) (1 - \tau_0^k)$$

$$= -F_e(k_{t-1}, e_t) \frac{1}{2} (\phi_1 + \phi_2 f_1(\lambda, l_{1,t})) \mu_0$$

• for capital at $t \geq 0$:

$$\mu_t + \gamma_t \beta u'(c_{1,t+1}) F_{kk}(k_t, e_{t+1}) (1 - \bar{\tau}) = \beta \mu_{t+1} (1 - \delta + F_k(k_t, e_{t+1})).$$

B Computational strategy: Approximation of the time path

1. Fix T as the number of periods after which the steady state is assumed to have been reached. (We use $T = 150$.)

2. Propose a $3T + 3$-dimensional vector $X = \{k_0, \ldots, k_{T-1}, l_0, \ldots, l_{T-1}, \gamma_0, \ldots, \gamma_{T-1}, \Delta_1, \Delta_2, \lambda\}$. Note that his is not the minimal number of variables to be solved for as a fixed point problems. $2T+3$ would be sufficient. However, convergence is better if the approximation errors are spread over a larger number of variables.

3. With k_{-1} and g known, find $\{c_t, F_{k,t}, F_{l,t}, F_{kl,t}, F_{kk,t}\}$ from the resource constraint and the production function.

4. Calculate $\{\mu_t\}$ from the FOC for labor.

5. Calculate $\{\gamma_t\}$ from the FOC for consumption, making use of $\{\mu_t\}$ and the guess for $\{\gamma_{t-1}\}$ from the X-vector.

6. Form the $3T + 3$ residual equations to be set to 0:

 • The FOC for capital (Euler equation) has to be satisfied. (T equations)

 • The vector $\{\gamma_t\}$ has to converge, i.e., old and new guesses have to be equal. (T equations)

 • Check for each period whether the constraint on τ^k is satisfied. If yes, impose $\gamma_t = 0$. Otherwise, the constraint on capital taxes has to be satisfied with equality. (T equations)
• The remaining 3 equations come from the present-value budget constraints (PVBC) and the FOC for \(\lambda \). The discounted sums in the PVBCs are calculated using the time path of the variables for the first \(T \) periods and adding the net present value of staying in steady state thereafter.

7. Iterate on \(X \) to set the residuals to 0. We use trust-region dogleg algorithm and Broyden’s algorithm, repeatedly when necessary, to solve this \((3T + 3)\)-dimensional fixed point problem.

C Sensitivity analysis

To check the sensitivity of our results to the measurement of relevant tax rates and consumption inequality at the status quo, we recalibrate and solve our baseline model considering both a lower and a higher value for each the three data moments. Table 2 summarizes the results by reporting the duration of the transition and the revenue share of capital taxes for the extreme points of the set of POPI plans. We always find the same qualitative properties of the optimal policy as for the baseline calibration described in Section 4.

Table 2: Sensitivity analysis

<table>
<thead>
<tr>
<th>Calibration</th>
<th>workers gain as much as possible</th>
<th>capitalists gain as much as possible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>duration of transition (years)</td>
<td>revenue share of (\tau^k(%))</td>
</tr>
<tr>
<td>benchmark</td>
<td>26</td>
<td>21.7</td>
</tr>
<tr>
<td>(\tau_{SQ} = 0.3)</td>
<td>35</td>
<td>25.5</td>
</tr>
<tr>
<td>(\tau_{SQ} = 0.57)</td>
<td>17</td>
<td>15.4</td>
</tr>
<tr>
<td>(\tau_{SQ} = 0.15)</td>
<td>30</td>
<td>36.1</td>
</tr>
<tr>
<td>(\tau_{SQ} = 0.3)</td>
<td>14</td>
<td>7.2</td>
</tr>
<tr>
<td>(\lambda_{SQ} = 0.5)</td>
<td>25</td>
<td>21.5</td>
</tr>
<tr>
<td>(\lambda_{SQ} = 0.6)</td>
<td>25</td>
<td>21.3</td>
</tr>
</tbody>
</table>

Notes: The column entitled ‘Calibration’ indicates which data moment has been reset to which value. The subscript ‘SQ’ refers to the status quo.
Notes: Welfare is measured as the percentage increase in status-quo consumption that would give the agents the same utility as the optimal tax reform. The point $\psi = 1$ corresponds to the policy under the ‘veil of ignorance.’
Figure 3: A typical time path for capital taxes
Figure 4: Properties of POPI programs in baseline model

Duration of transition (years)

- **Share of capital taxes in government revenues**
 - $\frac{\lambda}{1+\lambda}$
 - $\frac{\psi}{1+\psi}$

Workers' relative Pareto weight and consumption share (normalized)

- $\frac{\lambda}{1+\lambda}$
- $\frac{\psi}{1+\psi}$
Figure 5: The time paths of selected variables for three POPI plans in the baseline model.
Figure 6: Typical time paths for agents’ welfare and wealth

Evolution of welfare

-20
-25
-30
-35
-40
-45
-50
-55
0 50 100 150

welfare of capitalists
welfare of workers

Evolution of wealth

6
5
4
3
2
1
0
-1
-2
0 50 100 150

wealth of capitalists
wealth of workers